Anatomy and Physiology of Renal System

- Size and shape of each kidney
 - 10-12 cm long
 - 5-6 cm wide
 - 2.5 cm in depth
- Surrounded by mass of fatty connective tissue for protection
- Blood vessels, nerves, and ureters connected via the hilum
- Renal artery branches into 5 smaller arteries that enter hilus of kidney; smaller branches give rise to afferent arterioles
Renal Anatomy

- **Cortex**
 - Cortical area
 - Juxtamedullary area (next to medulla)
 - Contains:
 - Glomeruli
 - Proximal tubules
 - Cortical loops of Henle
 - Distal tubules
 - Cortical collecting ducts

- **Medulla**
 - Contains renal pyramids
 - Medullary loops of Henle
 - Medullary portions of collecting ducts
 - Join to form calyces which further join to become the conduit for urine to enter the ureter

Renal Anatomy

[Diagram of renal anatomy showing the gland and its components]
Renal Anatomy

Nephron

- Functional unit of kidney
- Consists of glomerulus and a tubular structure
- 85% of nephrons originate in superficial part of cortex (cortical nephrons)
- 15% of nephrons originate deeper in the cortex (juxtamedullary nephrons)
 - Longer, thinner loops of Henle
 - Responsible for urine concentration
Nephron: Capillary System

- Glomerular high pressure capillary system between afferent and efferent arterioles
- Peritubular capillary system; a low system originating from the efferent arterioles
 - Surround loop of Henle

- Medullary nephrons have an additional capillary system, the vas recta, consisting of long straight capillaries following the long loops of Henle

Glomerulus of Nephron

- Tuft of capillaries emerging from afferent arterioles
- Contained within Bowman’s capsule
- Blood flows out of glomerular capillaries via the efferent arterioles
- Space within Bowman’s capsule for the filtrate: Bowman’s space
- Basement membrane of the glomerular capillary membrane determines permeability; permeable to water but not to plasma proteins
Tubular Structure of Nephron

- **Proximal convoluted tubule**
 - Majority of all reabsorptive and secretory processes
- **Loop of Henle**
 - Descending limb (thin walled)
 - Ascending limb (thick walled)
 - Impermeable to water
 - Solutes are reabsorbed
 - Loop diuretics work here
 - Filtrate is diluted to allow for excretion of free water
- **Distal convoluted tubule**
 - Thiazide diuretics work here to inhibit sodium reabsorption
 - Aldosterone works on late distal tubule and cortical collecting tubule (below)
- **Collecting tubule or duct**
 - Several distal tubules drain into the collecting tubule
 - Single layer of epithelial cells
 - No further electrolyte absorption or secretion
 - Cortical collecting tubule
 - Aldosterone works here
 - Medullary collecting tubule
 - ADH (vasopressin) works here
 - Responsible for determining concentration and acidity of urine

Glomerular Filtration

- Filtration of protein free plasma through the glomerular capillaries into Bowman’s space.
- The capillary filtration pressure is approximately 60 mm Hg. (Higher pressure than other capillary beds)
- Glomerular filtration produces 125 mL of filtrate each minute.
- Autoregulation.
Definitions

• Azotemia: Accumulation of nitrogenous wastes in the blood
• Renal insufficiency: Reduction in glomerular filtration to 20 to 50% of normal
• Oliguria: U.O. < 400 ml / 24 hours
• Anuria: U.O. < 50 ml / 24 hours

Diagnostic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine Volume</td>
<td>✓ Less specific
✓ Reflects kidney perfusion</td>
</tr>
<tr>
<td>Urine Specific Gravity / Osmolality</td>
<td>✓ Inability to concentrate is early sign of renal dysfunction
 ✓ Concentrating ability = tubular functioning</td>
</tr>
<tr>
<td>BUN</td>
<td>✓ Not most specific indicator
✓ Variations exist in urea load
 ✓ BUN rises in disproportion to renal function with volume depletion</td>
</tr>
</tbody>
</table>
Diagnostic Parameters

<table>
<thead>
<tr>
<th>Serum Creatinine</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Specific for renal function</td>
</tr>
<tr>
<td>✓ Rise may not be evident until 50% GFR is lost</td>
</tr>
<tr>
<td>✓ Creatinine needs to stabilize before an accurate assessment of renal function can be made</td>
</tr>
<tr>
<td>✓ In total loss creatinine will rise 1-2 mg/dL per day and stabilize at 12-15 mg/dL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Creatinine Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ As GFR falls, creatinine excretion is increased and the rise in serum creatinine is less.</td>
</tr>
<tr>
<td>✓ GFR can be overestimated (limitation of creatinine clearance)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glomerular Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Glomerular filtration determined by estimation of creatinine clearance.</td>
</tr>
<tr>
<td>✓ GFR is usually estimated with the Cockroft-Gault equation: (140-age) x weight (kg) / plasma creatinine x 72 (value multiplied by 0.85 in females)</td>
</tr>
</tbody>
</table>

Acute Kidney Injury

- A sudden loss of the kidneys' ability to excrete wastes, concentrate urine, and conserve electrolytes.
- The definition of acute injury includes one or more of the following that occurs abruptly (within 48 hours):
 - An absolute increase in serum creatinine of more than or equal to 0.3 mg/dL.
 - A percentage increase in serum creatinine of more than or equal to 50%.
 - A reduction in urine output of less than 0.5 ml/kg per hour for more than six hours.
- Occurs in approximately 20% of critically ill patients.
- Mortality ranges from 28% to 90%.
- Variations in statistics exist due to differences in past definitions for acute renal failure.
Stages of Acute Kidney Injury

<table>
<thead>
<tr>
<th>Stage</th>
<th>Creatinine Criteria</th>
<th>Urine Output Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increase in serum creatinine of more than or equal to 0.3 mg/dL or increase to more than or equal to 150% to 200%</td>
<td>Less than 0.5 ml/kg per hour for more than 6 hours.</td>
</tr>
<tr>
<td>2</td>
<td>Increase in serum creatinine to more than 200% to 300%.</td>
<td>Less than 0.5 ml/kg per hour for more than 12 hours.</td>
</tr>
<tr>
<td>3</td>
<td>Increase in serum creatinine to more than 300% or serum creatinine of more than or equal to 4.0 mg/dL with an acute increase of at least 0.5 mg/dL.</td>
<td>Less than 0.3 ml/kg per hour for 24 hours or anuria for 12 hours.</td>
</tr>
</tbody>
</table>

Etiology

- **Outside Hospital**
 - Glomerular nephritis
 - Vasculitis
 - Obstructive Uropathy

- **Inside Hospital**
 - Renal hypoperfusion
 - Drug toxicity
 - Combination of hypoperfusion and drug effect
Signs and Symptoms

- Fatigue
- Confusion
- Twitching or weakness related to metabolic acidosis
- Dry skin
- Edema
- Pallor
- Uremic frost/pruritis
- Flank pain
- Infection

Classifications of Acute Kidney Injury

- Prerenal
- Intrarenal
- Postrenal
Prerenal AKI

Causes
- Decreased intravascular volume
- Decreased cardiac output
- Vasodilation during sepsis
- Bilateral renal vascular obstruction
- Hepatorenal syndrome

Treatment

The treatment of pre-renal AKI is aimed at the rapid reversal of the underlying cause of renal hypoperfusion in order to restore adequate renal perfusion.

Diagnostic Parameters for Prerenal AKI

- Positive response to a fluid challenge is diagnostic of pre-renal AKI.
- Oliguria.
- Urinary Sodium < 20 mEq/L.
- Concentrated urine: Urine specific gravity > 1.0150 and urine osmolality > 500 mOsm/L.
- BUN: Creatinine Ratio > 10:1 (usually closer to 20:1). Increased proximal tubular reabsorption of BUN.
- Fractional excretion of sodium (FENa) < 1%
- Fractional excretion of urea (FEurea) < 35%
- Urine Protein 0 or minimal.
- Urine Sediment: Normal or minimally abnormal; hyaline casts, finely granular casts.
Intrarenal AKI: Classifications

- Tubular: Acute Tubular Necrosis (most common cause)
- Glomerular: Glomerulonephritis and small vessel vasculitis.
- Intersitial: Interstitial Nephritis.
- Vascular: Athroembolic disease, large vessel vasculitis.

Acute Tubular Necrosis (Medullary): Etiology

- Nephrotoxic agents
- Prolonged ischemic injury
- Hemolysis or rhabdomyolysis
- Endotoxin release in sepsis
- Hypercalcemia
- Any cause of prerenal AKI that is prolonged (clinical challenge)
Nephrotoxic Agents

- Aminoglycosides
- Amphotericin B
- Chemotherapy agents
- Cyclosporine
- ACE inhibitors
- NSAIDS
- Contrast agents

Contrast Agents

- Risk reduced by pretreatment with oral n-acetylcysteine
 - 24 to 48 hours before contrast exposure
 - 600 mg BID
- Risk reduced by adequate pre-procedure hydration with 0.9NS or sodium bicarbonate drip
 - 154 mEq of sodium bicarbonate/L at 3 ml/kg for 1 hour prior to procedure
 - Followed by 1 ml/kg/hr for 6 hours post procedure
 - Some evidence that sodium bicarbonate is superior to sodium chloride

ATN Pathophysiology

- Destruction of the tubular epithelial layer of cells
- Often reversible if treatment is promptly initiated.
 - If the tubular basement membrane is damaged from prolonged injury and ischemia, it cannot be regenerated.
- Oliguria develops when tubules become obstructed due to tissue swelling or cellular debris.
- A reabsorption (into circulation) of urine filtrate can occur through damaged tubular epithelium.
- Damaged tubular cells can leak ATP and potassium, and calcium can leak into the cell.
- Scar tissue can form over necrotic areas
ATN Diagnostic Parameters

- Urine Sodium > 20 mEq/L.
- Urine osmolality < 400 mOsmol/L (loss of tubular concentrating ability).
- Bun:Creatinine Ratio 10:1.
- Fractional excretion of sodium (FENa) > 2-3%.
- Fractional excretion of urea (FEurea) > 50%.
- Minimal to moderate proteinuria.
- Urine Sediment: Muddy brown casts, tubular casts, renal epithelial cells.

ATN: Treatment

- Optimizing volume status for prevention
- Avoid all nephrotoxic agents; avoid or dose adjust all medications requiring renal clearance
- A loop diuretic can be used to correct volume overload if the patient is still responsive to diuretics
 - Diuretics are controversial in the treatment of acute kidney injury
- Dopamine, fenoldopam, and mannitol are not indicated
- Treatment is supportive
 - Managing fluid and acid/base balance, electrolytes, and hematologic abnormalities
Glomerular Nephritis (Cortical)

- **Causes**
 - Subacute bacterial endocarditis
 - Post streptococcal infection
 - Systemic lupus erythematosus
 - Drug-induced vasculitis
 - Malignant hypertension

- **Pathophysiology**
 - Cortical involvement from the above causes renal capillary swelling.
 - Edema and cellular debris obstruct the glomeruli, resulting in a decrease the GFR and oliguria.

- **Diagnostic Parameters**
 - Urinalysis will have RBC casts, protein, and leukocytes.
 - BUN to creatinine ratio 10:1 and elevated.

- **Treatment**
 - Immunosuppressant medications.
 - Plasmapheresis.

Interstitial Nephritis (Cortical)

- **Causes**
 - Drug-induced: Allergic nephritis.
 - Common but often unrecognized allergic event in the interstitium of the kidney.
 - Usually in response to a specific drug.
 - May have associated fever, rash, eosinophilia.
 - Bacterial, viral, and other infections.
 - Immune and neoplastic disorders.

- **Diagnostic Parameters**
 - WBC casts with eosinophils.
 - BUN to creatinine ratio 10:1 and elevated.

- **Treatment**
 - Remove the drug that is the causative agent.
 - Steroids may be used.
Postrenal AKI

- **Classifications**
 - Mechanical
 - Urinary calculi
 - Tumor
 - Prostatic hypertrophy
 - Fibrosis
 - Blood clot
 - Retroperitoneal hemorrhage
 - Functional
 - Neurogenic bladder
 - Ganglionic-blocking agents

- **Pathophysiology**
 - Obstruction can increase renal interstitial pressure causing an increased opposing force to GFR.

- **Signs and Symptoms**
 - Abrupt decrease in urine output
 - Urinalysis may show hematuria.

Stages of AKI

Onset Phase
- Hours to days
- Renal blood flow and glomerular filtration fall
- Urine output falls
- BUN: Creatinine – Normal or slight increase

Oliguric / Anuric (Maintenance)
- 8-14 days
- Decreased GFR
- Urine output < 15 ml/hr (400 cc/24 hours)
- BUN and creatinine increased
- Metabolic acidosis
- Increased potassium
- Water gain with hypertension, dilutional hyponatremia, and pulmonary congestion
- Uremia can develop: Neuromuscular irritability, seizures, coma, death
- High mortality rate
Stages of AKI

Diuretic Phase
- 3 to 4 weeks after onset
- Can last 1-2 weeks
- BUN and creatinine begin to decrease
 - Diuresis may occur before BUN and creatinine fall
- Urine output may exceed 3L/24 Hr: 150-200% of normal
 - Osmotic diuresis from elevated BUN
 - Tubules cannot yet concentrate
 - Fluid losses can jeopardize adequate circulating volume
- Uremic symptoms may not completely resolve because tubular function is not yet normal

Recovery Phase
- Recovery is shorter in non-oliguric renal failure
- Begins with stabilization of laboratory values
- Several months to one year
- BUN: Creatinine almost normal; residual dysfunction may remain
- Urine output returns to normal

Electrolyte Abnormalities in AKI

- Hyperkalemia – most common with oliguric AKI.
- Hyperphosmatemia.
- Hypermagnesemia.
- Hypocalcemia.
- Acidemia
 - The kidneys excrete acid.
 - Oral sodium bicarbonate is typically used to treat.
 - Negative hemodynamic effects have been associated with IV sodium bicarbonate bolus dosing
 - The treatment for severe metabolic acidosis remains controversial.
Uremic Syndrome

- Seen in both acute kidney injury and in chronic renal failure.
- All organs can be affected
- Signs and symptoms can include: nausea, vomiting, pruritis, bleeding, encephalopathy, and pericarditis
- Symptoms not related solely to elevated BUN or creatinine.
- Uremic symptoms warrants aggressive treatment with some type of dialysis therapy.

Treatment of Early Oliguric Kidney Injury

- Eliminate all contributing pre-renal factors
- Rule out postrenal obstructive causes
- A loop diuretic can be used to correct volume overload if the patient is still responsive to it. (Diuretics are controversial)
- Dopamine, fenoldopam, and mannitol are not indicated
- Avoid all nephrotoxic agents; avoid or dose adjust all medications requiring renal clearance.
- Initiate some form of extra corporeal blood therapy early
- Provide meticulous supportive care
- Avoid complications
 - Infection
 - Fluid, electrolyte, and acid/base imbalances
 - Hematologic abnormalities
 - Drug toxicity from drugs metabolized or excreted from the kidney
Treatment of Established Oliguric Kidney Injury

- Modify dose of drugs metabolized or excreted from kidney.
 - Base dose adjustment on an assumed GFR of zero.
- Limit fluid intake to avoid congestion.
- Manage electrolytes
 - Restrict potassium, phosphate, and magnesium intake.
 - Assess for hypotension.
- Prevent complications
 - Infection-related complications are the most common cause of death
 - Nosocomial pneumonia.
 - IV catheter infections.
 - Intra abdominal sepsis.
 - Hemorrhage
 - Uremic toxins inhibit platelets and factor VIII.
 - Factor VIII may need to be replaced.
 - Arginine vasopressin can also increase levels of factor VIII.
- Nutrition
 - Sufficient fat and carbohydrate calories to prevent protein wasting
 - Limit protein if not on dialysis
 - Folate and pyridoxine are lost through dialysis

Avoid corticosteroids (except for interstitial nephritis and some types of renal vasculitis).
 - Catabolic effect
 - Adversely affects immune function

Nursing Considerations

- Maintain skin integrity (uremic effects - high risk for breakdown)
- Prevent infection (infection is major cause of mortality)
 - BUN > 80 to 100 mg/dL is associated with a high risk of infection.
- Nutrition
 - Patients can have accelerated protein catabolism
 - BUN> 100mg/dL - despite routine dialysis).
 - Need higher protein intake.
- Maintain fluid restriction.
- Replace water soluble vitamins
- Monitoring of electrolytes, serum protein, albumin, hematocrit, and BUN and creatinine.
 - Low serum protein and albumin levels have an immunosuppressive effect
Renal Replacement Therapy: Intermittent Hemodialysis

- Central venous access (emergency)
- Arteriovenous grafts or fistulas (chronic)
- Anticoagulation is generally required; non-heparin dialysis is also an option
- Blood pumped through an artificial kidney on one side of the dialysis membrane, while the dialysate (electrolyte) solution flows the opposite direction
- Combines adsorption, diffusion, osmosis, and ultrafiltration
 - Remove fluid and maximal amount of solute (electrolytes, metabolic products, drugs, and toxins)
 - Maximum removal allows for intermittent sessions
- Requires more hemodynamic stability than hemofiltration
- Hypotension is the most common problem
- SLEDD is alternative form of delivery

Dialysis Equilibrium Syndrome

- From shifts in extracellular compartment
- Nausea, vomiting, confusion, seizures, coma.
- Most common in first dialysis session with high BUN.
- Treatment.
 - Decreased dialysis time.
 - Decreased dialysis flow rates.
 - Dialyzer with smaller surface area.
 - Sodium chloride, dextrose, mannitol.
Renal Replacement Therapy: Peritoneal Dialysis

- Slow form of dialysis - exchange of fluids and solutes between the peritoneal cavity and peritoneal capillaries
- Utilizes diffusion
- Less efficient than hemodialysis
- No need for vascular access
- No significant hemodynamic effects
- 1 to 3 L of solution with dwell time of 30 to 40 minutes
- Osmotic gradient for fluid removal
 - Hyperosmolar glucose concentrations
- Complications
 - Abdominal distention and increased work of breathing
 - Pleural effusion
 - Hyperglycemia
 - Peritonitis

Renal Replacement Therapy: CEBT

Ultrafiltration

- SCUF – Slow continuous ultrafiltration
- Fluid moves through a semipermeable membrane via a pressure gradient (higher pressure gradient creates more fluid removal)
- Results are primarily fluid removal
- Hemofiltration, hemodialysis, and hemodiafiltration all use ultrafiltration as a component of therapy
- Adsorption is another principle involved in all 4 therapies
 - Clinging of positively charged molecules to the negatively charged membrane of the filter.
 - Filter can become clogged with molecules. The removal of these molecules from systemic circulation is a benefit of CEBT therapy.
Renal Replacement Therapy: CEBT

Hemofiltration
- CVVH – Continuous veno-venous hemofiltration
- Uses convection to remove solutes
 - Process of solute removal by solvent drag
 - More fluid through semi permeable membrane = more solute removed.
 - Replacement solution is used to create solvent drag
 - Faster rate of replacement solution = more solvent drag
- Convection removes medium and large molecules
- Solute removal is slow so the process must be continuous
- Fluid removal still exceeds solute removal
- Less likely than hemodialysis to produce hypotension
- Some medications are cleared via hemofiltration and require a dose adjustment
 - Dose adjusted based on an assumed creatinine clearance of approximately 14 ml/minute

Renal Replacement Therapy: CEBT

Hemodialysis
- CVVHD – Continuous veno-venous hemodialysis
- Uses dialysate solution to create selective diffusion of electrolytes
 - Excellent technique for the removal of small particles
- Hemodialysis removes both solutes and fluid
- Often used on patients who are chronic dialysis
- Provides more hemodynamic stability than intermittent hemodialysis
- Allows fluid overloaded critically ill patients to receive a higher caloric intake
Renal Replacement Therapy: CEBT

Hemodiafiltration
- CVVHDF – Continuous veno-venous hemodiafiltration.
- Uses both hemodialysis and hemofiltration
- Allows for the removal of small, medium, and large molecules.

CEBT
- A venous to venous connection with a double lumen venous catheter
- Jugular, subclavian, and femoral veins can be used.
- Venous-only access avoids the risk of limb ischemia associated with arterial access.
- Extra corporeal pump is used to create flow through the system.
- Filtration is ineffective when MAP fall below 60mmHg.
- Equipment
 - Blood filter, blood pumps, circuit tubing, dialysate and replacement infusion tubing, anticoagulant tubing, and a collection bag.
<table>
<thead>
<tr>
<th>Therapy</th>
<th>Principles</th>
<th>Replacement Solution</th>
<th>Dialysate Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCUF</td>
<td>Ultrafiltration Adsorption</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CVVHD</td>
<td>Ultrafiltration Adsorption Diffusion</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CVVH</td>
<td>Ultrafiltration Adsorption Convection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CVVHDF</td>
<td>Ultrafiltration Adsorption Diffusion Convection</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Criteria for Intermittent Dialysis

- Volume overload in presence of oliguria or anuria
- Uncontrolled hyperkalemia, hyperphosphatemia, hypermagnesemia
- Life threatening acidosis
- Life threatening drug overdoses or toxicity requiring dialysis
- Symptomatic uremia
 - Nausea and vomiting
 - Bleeding
 - Pericarditis
 - Seizures, coma
- BUN 80-100 mg/dL
- Creatinine 10 mg/dL

Criteria / Candidates for CEBT

- Hemodynamically unstable patients with criteria for intermittent hemodialysis
- Patients with increased ICP who need dialysis
- Critically ill patients with early signs of AKI
- Nontraditional indications:
 - Hyperthermia
 - Rhabdomyolysis
 - Systemic inflammatory response syndrome,
 - Fluid management in the hemodynamically unstable patient without renal failure
Nursing Considerations in CEBT

- Hypothermia
 - Warming blankets
 - Use of warmers as part of the ECBT equipment

- Coagulation
 - Clotting versus clogging
 - Heparin most commonly used
 - Alternative is to use a technique that includes the use of a replacement solution. Use of replacement solution results in continuous dilution of the hematocrit.

- Cardiac arrhythmias
 - Fluid and electrolyte imbalance
 - Equipment can cause ECG artifact that mimics cardiac arrhythmias
 - Equipment should be temporarily stopped so the patient’s rhythm can be reassessed

Electrolytes: Overview

- Abnormalities often occur in groups and symptoms can be from mixed disorders
- Treatment is focused on immediate crisis and underlying cause
- Suspect electrolyte abnormalities:
 - Renal disease
 - Endocrine disease
 - Acute change in mental status
 - Ventricular arrhythmias
Sodium

- Dominant extracellular cation
- Primary determinant of serum osmolality
- Sodium is closely related to water (regulates ECF)
- Factors to consider when assessing sodium abnormalities:
 - Serum and urine osmolality
 - Intravascular volume status / presence of edema
 - Serum albumin, lipids, and glucose
 - Medications and IV fluids
 - Renal function

Hyponatremia:
Sodium < 135 mEq/L

- S&S related to rapidness of onset and severity
 - Signs and symptoms can also be related to fluid balance.
 - Primary effects are CNS related.
- Cognitive and motor function changes @ < 125 mEq/L
- Permanent changes at levels < 110 mEq/L
- 50% mortality when < 105 mEq/L

- Muscle cramps
- Twitching / tremors
- Muscle weakness
- N&V / abdominal cramps
- Headache
- Irritability / personality changes
- Confusion
- Lethargy progressing to coma
- Seizures
Hypotonic Hyponatremia

- Most common form of hyponatremia
- Results in intracellular hypoosmolar state (creates S&S)
- Occurs as a result of excess free water in relation to sodium
- Patients can be:
 - Hypovolemic
 - Isovolemic *most common form
 - SIADH
 - Hypervolemic

Treatment for Hyponatremia

- Sodium should be corrected to an initial level of 120 to 130 mEq/L
 - Over 12 to 24 hours
 - No more than 8-12mEq / 24 hours unless life threatening symptoms
- Correct at rate proportional to development (slower rate for chronic hyponatremia)
- Free water restriction for levels > 125 to 130 mEq/L

Caution: Osmotic demyelinating syndrome
Hypernatremia

Definition: Sodium greater than 145 mEq/L with a serum osmolality > 295 mOsm/kg. *Most cases of hypernatremia involve a hyperosmolar state.*

- Rarely occurs in patients with:
 - Normal ADH secretion
 - Thirst mechanism
 - Ability to consume free water

- Almost always causes cellular dehydration.

Treatment

- Correct underlying cause
- Decrease 0.5 to 1.0 mEq/L per hour
 - Replacement of free water with D5W or 0.2 or .45 NS
 - Normal saline may be used if hemodynamically unstable (adequate circulating volume is priority)
 - Loop diuretics or dialysis rarely needed

Caution – Cerebral Edema

Hypernatremia

Causes
- Conditions with limited ability to consume free water (ICU setting)
- Hypertonic tube feedings
- Dehydration (burns, tachypnea, hyperthermia)
- Osmotic diuretics with excessive free water clearance.
- Diabetes mellitus
- Diabetes insipidus

Signs and Symptoms
- Thirst (early symptom)
- Urine output decreases and urine osmolality increases due to renal water conservation
- Dry mouth and skin
- Increased body temperature
- Muscle weakness
- Headache
- Irritability and agitation
- Seizures
- Coma
Potassium

- 95% or > of potassium is intra cellular
- Majority of potassium contained in muscle
 - Declines with age due to decrease in muscle mass
- Dietary intake is the major source / kidneys responsible for excretion
- Ratio of extracellular to intracellular important for electrical membrane potentials
- Major body systems impacted by abnormalities:
 - GI
 - Neuromuscular
 - Cardiac

Nerve impulse and muscular function transmission dependent on potassium.

Hypokalemia: Causes

- K+ less than 3.5 mEq / L (total body deficit of 5-10%)
- Causes:
 - Poor K+ intake
 - Increased GI loss (not usually cause of symptomatic imbalance)
 - Increased renal loss
 - Renal tubular acidosis
 - Diuretics
 - Excess mineral or glucocorticoids (aldosterone)
 - Low magnesium
 - Certain antibiotics

- Extracellular to intracellular shifts
 - Alkalosis (potassium exchanged for hydrogen ions)
 - also causes increased renal loss
 - Insulin
 - Treatment of DKA or HHNK
 - Insulin
 - Beta adrenergic agonists

- Note: Does not reflect total body potassium - Correct with caution

- Caution with hypokalemia in presence of acidosis.
Hypokalemia: Signs and Symptoms

- Symptoms occur when $K^+ < 3.0$ mEq/L
- Severity dependent on:
 - Rapidness of onset
 - Systemic pH
 - Calcium level
- S&S related to altered membrane potentials and impaired muscle contractility
 - Increase in resting membrane potential of neuronal and muscular cells
 - Reduces excitability
- GI
 - Orthostatic hypotension
 - Parasthesias, weakness, fatigue and muscle cramps
 - Lower extremities are typically impacted first
 - Respiratory muscle weakness, dyspnea, paralysis and arrest (< 2.5 mEq/L)
- Enhanced digitalis effect
- Severe hypokalemia can result in rhabdomyolysis

Hypokalemia: ECG Changes

- Mild hypokalemia: delays ventricular repolarization
 - ST depression, inverted T wave
 - Heightened U waves, prolonged QT interval
- Lowered threshold for ventricular fibrillation and reentrant tachycardias
- Any arrhythmia
- Severe hypokalemia
 - Increased PR interval
 - Increased QRS interval
Hypokalemia: Treatment

- Treat cause
- Correct alkalosis
- Correct hypomagnesemia
- Increased potassium intake (dietary or supplement) if potassium ≥ 3.0 mEq/L
 - Foods high in potassium: orange juice, bananas, raisins, milk, green vegetables
 - Oral supplements up to 40 mEq can be used safely several times per day.
- Add potassium to maintenance IV fluid
- IV potassium bolus for severe deficiency (less than 3.0 mEq /L if on digoxin, symptoms related to hypokalemia, or less than 2.5 mEq /L without symptoms)
 - Non glucose solution
 - Safe dosage: 10 mEq / 100 cc over 1 hour
 - May give 20 mEq over 1 hour if K+ is < 3.5 mEq /L (higher doses if life threatening)
 - Concentration should not exceed 10 mEq per 100 ml via peripheral line or 20 mEq per 100 ml if central line

Note: Replace cautiously in those with impaired ability to excrete.

Hyperkalemia:

K+ greater than 5.0 mEq / L

- Rarely occurs in healthy people
- Impaired potassium management:
 Renal Disease
 Diabetics

- Decreased Excretion
 - Renal disease
 - Decreased renal perfusion
 - Sickle cell disease
 - Decreased aldosterone
 - Addison’s
 - Diabetes
 - Drugs inhibiting aldosterone (aldactone, ACE-I, ARBs, Non steroidal antinflammatories, Heparin)

- Increased Intake
 - Salt substitutes
 - Supplements
 - High dose penicillin with K+ (higher doses if life threatening)
 - Lactated ringers
 - Transfusion of banked blood
Hyperkalemia: Causes

- **Cellular disruption with leak of intracellular K+**
 - Crush injuries
 - Rhabdomyolysis
 - Hemolysis (blood transfusion reaction)
 - Early burns
 - Trauma
 - Large hematoma
 - Severe catabolic state
 - Lysis of tumor cells (chemotherapy)

- **Intracellular to extracellular shift**
 - Metabolic acidosis
 - Hypertonic glucose with insulin deficiency
 - Hyperosmolality
 - Digitalis toxicity
 - Depolarizing neuromuscular blocking agents
 - Beta blockers

Hyperkalemia: Signs and Symptoms

Symptoms when K+ > 6.0 mEq/L
- Skeletal muscle effects when K+ > 7.0 mEq/L
- Neuromuscular effects complicated by acidosis, low sodium, low calcium, high magnesium
- Parathesia
- Lower extremity weakness
- Hypotension

EKG Changes
- Tall narrow peaked T waves
- Wide QRS
- Prolonged PR and flattened to absent P wave
- Dysrhythmias
 - √ Bradycardia / heart block
 - √ Sine wave pattern
 - √ Asystole
Hyperkalemia: Treatment

- Level > 6.0 mEq/L should be treated. Urgency based on clinical manifestations.
- Limit K+ intake
- Volume expansion
- K+ > 6.5 or dysrhythmias
 - Stabilize cardiac membrane with calcium chloride
 - Not if digitalis toxic
 - Shift potassium into cell
 - 50% Dextrose and insulin (50 ml and 10 units)
 - High dose inhaled beta agonists (synergistic)
 - Sodium bicarbonate to correct acidosis

Hyperkalemia: Treatment

- Kayexalate is an exchange resin
 - Exchange sodium for K+ and moves K+ out via the GI tract
 - Can be given orally or as retention enema
- Oral dose is administered in sorbitol
 - Sorbitol orally acts as osmotic laxative
- Retention enema is administered in dextrose
 - Sorbitol can cause intestinal necrosis when given by enema
- Loop diuretics if functioning kidneys
- Dialysis if renal dysfunction
QUESTIONS??

Thanks for Attending
Cardiovascular Boot Camp

You may contact us at www.cardionursing.com
The moment you stop learning You stop leading.