Sudden Cardiac Death: Who Is At Risk and What Can We Do?

Silence cell phones please!

My own near syncopal episodes!!!
Definition

• Unexpected death caused by cardiac causes that occurs within 1 hour of symptom onset

• Describes sudden collapse, loss of consciousness and loss of effective circulation that preceded biologic death

Incidence of Sudden Cardiac Death: Lowest to Highest

• General population
• High risk sub groups
• Any prior coronary event
• EF < 30% or HF
• Cardiac arrest survivors
• Arrhythmia risk markers; post MI
Cause of Sudden Death in Sample of Ambulatory Patients

- Ventricular fibrillation - 62.4%
- Bradyarrhythmias (including advanced AV block and asystole) - 16.5%
- Torsades de pointes - 12.7%
- Primary VT - 8.3%

Best survival with VT / V Fib Arrest

Ventricular Arrhythmias
Mechanisms of VT

- Disorder of impulse initiation
 - Abnormal automaticity
 - Acute MI / Ischemia
 - Electrolyte abnormalities
 - Acid / base imbalance
 - Increased sympathetic tone
 - Triggered mechanism: disturbance in recovery or repolarization (less common)
 - Early after-depolarization
 - Long QT
 - Delayed after-depolarization
 - Digitalis toxicity

- Disorder of impulse conduction
 - Reentrant Circuit (most common)
 - Reentrant Circuit within Myocardium
 - Bundle Branch Reentrant
Polymorphic VT with normal QT:

- Seen frequently in ischemic conditions
- Compared to monomorphic VT associated with scar

Ventricular Flutter
Spontaneous conversion to NSR (12-lead ECG)
 VF with Defibrillation (12-lead ECG)

Associated Pathophysiology
2 classifications

Structural
- CAD
- Myopathy
- Valvular heart disease

Non-structural
Approximately 5% of SCD patients have no structural heart disease

Structural Heart Disease – CAD

- Coronary artery disease (CAD) present in 80% of SCD population
 - 50% of those have acute changes in coronary status (plaque rupture / thrombus)

- Acute Coronary Syndrome
 - Vulnerable plaque
 - Highest risk of mortality within first 24 to 48 hours
 - V fib arrest
Tachyarrhythmias and CAD

- Highest risk of SCD – severe LV dysfunction
- Suppression of asymptomatic NSVT
 - No evidence of decreased mortality
- Sustained VT
 - Treatment guided by frequency and symptoms
- V-fib arrest not within 24 to 48 hours of event
 - Risk of recurrent arrest
- Electrophysiology study
 - Done after ischemic evaluation
 - Major goal to identify presence of ventricular tachyarrhythmias
 - ICD indication
 - CAD and syncope and inducible monomorphic VT (LVEF not a factor)

Ventricular Arrhythmia and Sudden Death related to Prior MI (Class I)

- Aggressive attempts to treat HF and ischemia
- Revascularization
- If revascularization cannot be done – ICD as primary therapy
- ICD in LV dysfunction from prior MI who present in unstable sustained VT
- ICD for primary prevention
 - 40 days post MI
 - LVEF ≤ 30-40%
Structural Heart Disease – Cardiomyopathy

• Cardiomyopathy
 – EF < 30% most powerful predictor of SCD
 – Left ventricular hypertrophy
 • Increases ventricular ectopy

Patients with Non Ischemic Dilated Cardiomyopathy

• Increased mortality with syncope
 – Tilt table testing not as useful
 – EP study to diagnose Bundle Branch Reentrant Tachycardia
• Self terminating episodes of VT most common cause
• No evidence for empirical treatment with antiarrhythmic therapy
• ICD reasonable in patients with syncope
• ICD for primary prevention of SCD
 • LVEF < 30% to 35%
 • NYHA Class II or III
Bundle Branch Reentrant Ventricular Tachycardia

A

B
Arrhythmogenic Cardiomyopathy

- Inherited muscle disorder
- Often referred to as arrhythmogenic right-ventricular dysplasia (ARVD)
- Manifest as an arrhythmia, heart failure, or sudden death
- Genetic characteristics include autosomal dominance inheritance (most common)
- Most frequently affects the right ventricle
- More often than thought also affects left ventricle
- More often males than females

Arrhythmogenic Cardiomyopathy Pathophysiology

Cardiomyocyte replaced with fibro fatty tissue
Initially patchy infiltration
Arrhythmogenic Cardiomyopathy Pathophysiology

- Progressive loss of muscle leads to thinning of the ventricular wall, dilation and pump dysfunction
- Thinnest portions of the right ventricle affected first
 - Triangle of dysplasia: Inflow, outflow, apical regions of RV

Arrhythmogenic Cardiomyopathy Disease Progression

- Four Phases
 - Early / Concealed phase
 - Subtle structural changes
 - Often asymptomatic
 - Overt Phase
 - Noticeable structural and functional changes
 - Palpitations, pre-syncope, syncope, arrhythmias
 - Impaired contractility and right-sided failure
 - Right ventricular dilation
 - Decreased contractility
 - Signs of right sided heart failure
 - Bi-ventricular failure
 - Disease spreads to left ventricle
 - Signs of biventricular failure
Arrhythmogenic Cardiomyopathy

Presentation

- Palpitations
- Presyncope
- Syncope
- Often episode of sudden cardiac death is first presentation
- Signs of heart failure are late sign

Diagnosis

- ECG
 - T Wave inversion in leads V1-V6
 - Epsilon wave
 - VT with LBBB pattern
 - Conduction delays through right bundle
- Endomyocardial biopsy
- Echocardiogram
 - RV enlargement and dysfunction
- MRI / CT
 - Detect fatty infiltrate

Karen Marzlin BSN, RN, CCRN-CMC
www.cardionursing.com
Arrhythmogenic Cardiomyopathy Treatment

- No cure
- Goal: Manage arrhythmias
- Antiarrhythmics
- Implantable Cardiovertor Defibrillator
- Radiofrequency catheter ablation if unsuccessful in treating VT with antiarrhythmics
- Refrain from competitive / intense sports
- Screening of family members
 - 1st and 2nd degree relatives
Hypertrophic Cardiomyopathy

• 1 of every 500 (Maron et al, 2003)
• Primary genetic cardiomyopathy
• Effects men and women equally
• Hypertrophy of myocardial muscle mass
• Associated with decreased ventricular filling and decreased cardiac output
• Most common cause of sudden death in young adults
• Cause unknown
 – 50% transmitted genetically
Hypertrophic Cardiomyopathy

- Disarray of cardiac myofibrils with hypertrophy of myocytes
- Cells take on a variety of shapes
- Myocardial scarring and fibrosis occurs

![Normal Muscle Structure vs. Myocardial Disarray](image)

Hypertrophic Cardiomyopathy

- Usually only effects LV
- Changes may be symmetrical
- Asymmetrical septal hypertrophy is more common

![Heart with Hypertrophic Cardiomyopathy](image)
Hypertrophic Cardiomyopathy

- May involve entire septum or only a portion of septum

Hypertrophic Cardiomyopathy OBSTRUCTIVE

- 30-50% of HCM patients have obstruction
- Obstruction of outflow tract
- Septal wall enlarges into ventricular cavity
- Anterior leaflet of mitral valve drawn towards the septum during ejection
- Early closure of aortic valve, decreased ejection time, decreased cardiac output
Hypertrophic Cardiomyopathy

OBSTRUCTIVE

HCM During Relaxation

HCM During Active Contraction

SAM

Hypertrophic Cardiomyopathy Presentation

- Many asymptomatic for years
- Incidence of sudden death often first presentation
- Identified during screening of relative of patient with HCM
- Symptoms related to severity of diastolic dysfunction or mitral regurgitation
- Dyspnea / activity intolerance
- Palpitations
- Chest pain
- Syncope / Presyncope
- Sudden Death
Hypertrophic Cardiomyopathy
Treatment

- Goals
 - Relief of symptoms
 - Preventing complications
 - Preventing or reducing risk of sudden death
 - No evidence to support treatment of non-symptomatic patients

- Beta blockers
 - 1st choice (with or without HOCM)
 - Symptomatic benefit / improved exercise tolerance
 - Changes in HR, contractility, and conduction

- Calcium Channel Blockers
 - If BB not effective
 - Use with caution due to vasodilatation

Hypertrophic Cardiomyopathy
Treatment

- Antiarrhythmic Therapy
 - AF
 - Most common arrhythmia
 - Disopyramide
 - Negative inotrope and Class I antiarrhythmic
 - Decreases SAM
 - Decreases MR
 - Use with BB to assist in HR control
 - Amiodarone
 - Obstructive or non-obstructive OK
 - Ventricular or atrial arrhythmias
 - Anticoagulation

- Other Medications
 - Diuretics
 - With caution
 - ACE Inhibitors and NTG
 - Avoided in HOCM
 - Caution with all vasodilators
 - Positive Inotropes
 - Strictly avoid any medication that increases contractility in OBSTRUCTIVE disease
Hypertrophic Cardiomyopathy
Treatment - Surgical

- Ventricular Septal Myectomy
 - Marked outflow obstruction
 - On maximum medical therapy
 - NYHA Class III or IV
 - MV Replacement or repair at same time (increases operative mortality)
 - Improvement noted immediately and last 20-30 years
 - Survival Rates 80% at 10 years
 - May need pacer due to development of LBBB.

Hypertrophic Cardiomyopathy
Treatment - Surgical

- Percutaneous Alcohol Septal Ablation
 - Symptomatic with full therapy
 - NYHA Class III or IV
 - Not appropriate if MVR needed
 - Cath Lab Procedure
 - Catheter in septal perforator
 - Ethyl alcohol injected
 - Myocardial infarction occurs
 - Enlarged septum eventually shrinks
 - Better for patients > 55
 - Often need pacemaker
Hypertrophic Cardiomyopathy
Sudden Cardiac Death

- Risk for Sudden Death
 - One or more 1st degree relative with an episode of SCD
 - More common in patients under 40
 - Normally occurs during strenuous activity
 - Left ventricular wall thickness greater than 30-35 mm
 - Prolonged or repetitive non-sustained ventricular tachycardia on Holter monitor
 - Hypotensive BP response to exercise
 - Syncope or near syncope

Hypertrophic Cardiomyopathy
Activity

- No intense competitive sports
- Most SCD occurs with football or basketball
- No “burst” exertion
- No restrictions in patients with family history but no evidence of disease themselves
- SCD may occur at rest
Structural Heart Disease – Valvular and Congenital Heart Disease

• Valvular heart disease
 – Aortic valve replacement
 • Risk peaks at 3 weeks and plateaus at 8 months

• Congenital disease associated with SCD
 • Tetralogy of Fallot
 – VSD, Aorta lies over VSD, Pulmonic valve stenosis
 (other obstructions)
 • Transposition of great arteries
 • Aortic stenosis
 – Risk increases with exertion
 • Functional single ventricle

Myocarditis / Endocarditis

• TTVP with symptomatic bradycardia or HB during acute phase of myocarditis
• Acute aortic regurgitation associated with VT should be surgically treated
• Acute endocarditis complicated by aortic or annular abscess and AV block should be surgically treated

Renal / Endocrine Disease

• Treat potassium, magnesium, and calcium
• VT and SCD can be induced by excess or insufficient hormone activity on myocardial receptors
 • Hypothyroidism
 • Pheochromocytoma
Other Causes of SCD

- Cerebral or subarachnoid hemorrhage
- Choking
- Pulmonary HTN
- Pulmonary embolus
- SIDS
- Obesity / dieting / anorexia

- Dissection of aortic aneurysm
 - Clinical Pearl:
 - Diastolic murmur
 - Blood pressure / pulse assessment

- Digitalis Toxicity
 - Clinical Pearl
 - If in doubt hold

Close Up Look At Arrhythmogenic Causes
Torsades De Pointes

- Recognition of this life-threatening arrhythmia is important because it is not treated like other VTs
- Two groups: Acquired and congenital
- Acquired
 - Drugs prolonging repolarization (class 1a, 1c, and sotolol)
 - Electrolyte abnormalities
 - Severe bradycardias
- Congenital

Acquired Torsades De Pointes

- Warning Signs:
 - QT prolongation
 - Usually greater than 0.5 sec
 - Rate adjustment QTc
 - T Wave aberration
 - Prominent U waves
 - Pause dependent couplets
- Short bursts: QRS peaks first appear to be up and then to be down (Can degenerate into V fib)
Emergency Treatment for Acquired Torsades de Pointes

- Immediate discontinuations of all agents that may be potentially responsible
- IV potassium is given to correct electrolyte abnormalities
- IV magnesium is regarded as the treatment of choice for TdP and is suggested even in normomagnesemia
- If IV magnesium is unsuccessful, overdrive ventricular pacing or medication to increase HR may be necessary
- DC cardioversion is usually transiently effective in terminating TdP.

 - Note: Class IA drug induced TdP usually appears soon after the initial administration of the drug

Case Example
Cardiac Ion Channel Abnormalities

• Long QT Syndrome (LQTS)
• Brugada disease

 – Diagnosed by family history and ECG

Congenital LQTS

• QTc > 450 ms
• Genetic defect in either potassium (LQT1 or LQT2) or sodium (LQT3) channels
 – Delayed repolarization (1 and 2)
 – LQT1 and LQT2 = 95%
 • Beta blockers
 – LQT3 = 5%
 • Beta blockers may be harmful
• Autosomal dominant trait
• QT prolongation important risk factor for SCD
 • QTc < 440 ms / < 5%
 • QTc 460 to 500 ms / 20%
 • QTc > 500 ms / 50%
LQTS

- **Syncope**
 - Ominous
 - Secondary to torsades de pointes
 - Occurs with increase in sympathetic tone
 - Usually terminates spontaneously (can degenerate into VT)

- **Treatment**
 - Family screening
 - Beta-blockers / pacemakers
 - ICDs
 - Avoid strenuous exercise
 - Avoid medications that prolong QT
 - www.QTdrugs.org
 - www.torsades.org

Brugada Syndrome

- Disorder of cardiac sodium channel
 - Reduction of sodium current available during Phase 0 of action potential
- Autosomal dominant
- ST elevation in anterior precordial leads
 - Cove
 - Saddleback
- ECG can be dynamic
- In children temperature spike may uncover
 - Treat aggressively
- Syncope
 - 2 year risk of SCD approximately 30%
- ICD recommended
Most common in Asia
Typical patient young male age 30 to 50 who is otherwise healthy.
Wolff Parkinson White Syndrome

- Termed Pre-excitation because some conduction occurs via the Kent bundles in addition to the normal pathway; because conduction via the Kent bundles is faster than via the AV node the ventricles are pre-excited

- This produces a “delta wave” on the EKG
 - Short PR
 - Wide QRS

Delta Wave of Pre-excitation Syndrome

- 60 to 70% of WPW shows evidence in SR

- Left sided accessory pathway: Positive delta wave in V1
- Right sided accessory pathway: Negative delta wave in V1
Conduction over an accessory pathway

Manifest accessory pathway

- PR ≤ 120 ms
- Delta wave present
- QRS ≥ 120 ms
- Repolarization abnormal

Concealed accessory pathway

- PR normal
- Delta wave absent
- QRS normal
- Repolarization normal

Conduction over an accessory pathway

- Conduction over AV connection (no complete conduction)
- Fusion of conduction over AV connection and delta wave over AV node (QRS normal)
- Delta wave present
- More of ventricle activated via the AV connection (QRS exit width)
- Maximal preexcitation
- Ventricle activated only by AV connection (assembles PVC)
Arrhythmias of WPW (CMT)

Orthodromic SVT

Antidromic SVT

Atrial fibrillation

Orthodromic Tachycardia

Negative P' in lead 1 = left sided accessory pathway

Positive P' in lead 1 = right sided accessory pathway
Antidromic Tachycardia

WPW and Atrial Fibrillation

- Mechanism of Action
 - Development of Atrial Fibrillation in WPW
 - Refractory period of accessory pathway
- Danger
Wide QRS Irregular Tachycardia:
Atrial Fibrillation with antidromic conduction in patient with accessory pathway – Not VT

Treatment for Atrial Fib in WPW

- Atrial Fib with antegrade conduction over accessory pathway

Slow conduction over accessory pathway:
- Amiodarone
- Procainamide
- Flecainide
- Sotalol
- Propafenone
Evaluation

Syncope: A Transient Loss of Consciousness

- Neurocardiogenic (most common)
 - Vasovagal
 - Absence of prodrome points to cardiac arrhythmia or central neurodegenerative disorder with autonomic failure
- Malignant Syncope:
 Syncope that occurs with little or no warning and results in significant injury or damage to property.
- Clinical application: Prodrome with vasovagal

- Cardiovascular origin common
 - Underlying structural heart disease
 - Transient ischemia
 - Wolff-Parkinson-White syndrome
 - Long QT syndrome
 - Brugada syndrome
 - Catecholaminergic ventricular tachycardia
 - Clinical application: Arrhythmias: Fast on and off
 - Clinical application: Seizure slow offset

- High rate of mortality
Goals for Patient Evaluation

• #1: Determine if patient at increased risk for death
• Identify cause of syncope
 – Improve quality of life
 – Prevent injury to self and others

* Mechanism of syncope unexplained in 40% of cases

• ECG / Monitoring
 – Gold standard for diagnosing an arrhythmogenic cause of syncope is to have ECG documentation of the rhythm disturbance at the time of syncope
• Echo
• Stress
• Tilt Table
 – Value in malignant syncope or structurally normal heart
General Considerations for SCD

- CPR / AED
 - Practice example success story
- Post resuscitative efforts
 - Induced mild hypothermia
Clinical Considerations

- **Reversible Causes**
 - Electrolyte abnormalities
 - Volume depletion
 - Hypemia / hypoxia
 - Mechanical factors

- **Obstructions to Cardiac Output**
 - HOCM / Aortic stenosis
 - Murmur assessment
 - Pulmonary embolus
 - Identification of risk factors
 - Tamponade
 - Beck’s Triad
 - Tension Pneumothorax
 - Barotrauma
 - Lung sounds

Antiarrhythmic Therapy in Ventricular Arrhythmias and Sudden Death

- **Beta Blockers**
 - Suppresses ventricular arrhythmias
 - Reduces incidence of SCD

- **Amiodarone**
 - Suppresses ventricular arrhythmias
 - No definite survival benefit
 - Complex drug interactions and many adverse side effects

- **Sotalol**
 - Suppresses ventricular arrhythmias
 - No definite survival benefit
 - More pro-arrhythmic than amiodarone
Antiarrhythmic Therapy

- Antiarrhythmics (excluding beta blockers) not used as primary therapy for prevention
- Patients with VT who do not meet criteria for ICD
 - Beta-blocker first line
 - Amiodarone or sotalol if not effective
- Patients with ICD with recurrent VT
 - Sotalol or
 - Combination of amiodarone and beta-blocker

Patients Not Requiring Antiarrhythmics

- Because of proarrhythmias or exacerbations of existing arrhythmias antiarrhythmic therapy not indicated for:
 - Asymptomatic atrial ectopy and unsustained SVT
 - Asymptomatic ventricular ectopy without runs of VT
 - Simple ventricular ectopy in AMI with no hemodynamic compromise
 - Asymptomatic unsustained VT with no structural heart disease
 - Asymptomatic WPW without known SVT
 - Mildly symptomatic simple atrial or ventricular ectopy
Antiarrhythmic Medications Effecting the Action Potential

- **Class I** – Fast sodium channel blockers
 - IA: Quinidine, Procainamide, Disopyramide
 - IB: Lidocaine, Mexiletine, Tocainide
 - IC: Flecainide, Propafenone

- **Class III** – Potassium channel blockers
 - Amiodarone, Ibutilide, Dofetilide, Sotalol

- **Class IV** – Calcium channel blockers
 - Verapamil, Diltiazem

Class II ???

Class IV: Calcium Channel Blockers

Class III: K⁺ Channel Blockers

Class I

Na⁺ Channel Blockers

Marked prolongation of refractory period (prolong QT interval).

Slow conduction (widen QRS).
Some prolongation of refractory period (prolong QT interval).
Arrhythmias with ACS

• V-fib early in ACS
 • Increase hospital mortality
 • No increase in long term mortality

• Lidocaine prophylaxis
 • Decrease V-fib
 • Increase mortality

• Beta-blockers prophylaxis
 • Decrease V-fib

• Correction of potassium and magnesium

Monomorphric VT

• DC cardioversion with sedation if unstable
• IV procainamide
 • Stable VT
 • Caution with CHF or severe LV dysfunction

• IV amiodarone
 • Hemodynamically unstable
 • Refractory to shock

• TTVP for pace termination
• Lidocaine if ischemia
• Class III: Calcium channel blockers in wide complex of unknown origin; especially if myocardial dysfunction
Polymorphic VT

- DC cardioversion with sedation when unstable
- IV beta-blockers if ischemia suspected
 - Improve mortality
- IV amiodarone in absence of abnormal repolarization
- Urgent angiography to exclude ischemia
- Lidocaine may be reasonable if ischemia suspected

Incessant VT – VT Storm

- Class I
 - Revascularization and beta-blocker
 - Followed by IV amiodarone or procainamide
 (if due to acute ischemia)

- Class IIa
 - IV amiodarone or procainamide followed by VT ablation
 - Important to understand substrate to target treatment
Management Options for VT Storm

- Shock may beget shock
 - Spontaneous calcium release
- Reprogram ICD (stop pacing)
- IV Beta Blockers
 - Amiodarone / Lidocaine
- Revascularization
- IABP
- Deep sedation / general anesthesia
- Sympathectomy
 - Thoracic epidural anesthesia (T1-T2)
 - Other approach
- Catheter ablation

Other Pharmacotherapy

♥ Electrolytes:
 ✓ Magnesium and potassium especially if hypomagnesemia and hypokalemia
♥ ACE inhibitors, angiotensin receptor blockers and aldosterone blockers
 ✓ Reverse remodeling and thus reduce incidence of SCD
♥ Antithrombotic and antiplatelet agents
 ✓ Reduce coronary thrombosis and therefore SCD
♥ Statins
 ✓ Reduce life-threatening arrhythmias in high-risk patients
♥ n-3 Fatty acids
 ✓ Anti-arrhythmic properties, conflicting data for the prevention of SCD
ICD Therapy

- Reduction in mortality compared to drug therapy
 - 25-55% reduction in mortality compared to drugs
- Primary prevention
- Secondary prevention
- Assumed Criteria
 - Receiving optimal medical therapy
 - Expectation of survival with good functional status for > 1 year
 - Meets specific criteria for disease state

ICD Device

- Pulse Generator
 - Single chamber, dual chamber, or biventricular pacing
 - Back up pacing
 - Antitachycardia pacing
 - Implanted subcutaneously – same as pacemaker
- Defibrillator lead
 - Detects arrhythmias
 - Delivers therapy
 - Defibrillator lead capable of pacing and defibrillating
 - Placed in right ventricle
ICD Rhythm Detection

• **Heart Rate**
 - Monitors ventricular rate and delivers therapy when rate exceeds programmed tachycardia detection rate
 - Defined rate boundaries
 • Tachycardia zones

• **Sudden Onset**
 - Detects sudden shortening of cycle length

• **Interval stability**
 - Looks for variability in cycle lengths
 - Differentiates regular from irregular rhythms

• **Morphology**
 - Measures width of electogram
 - Only treats if width is greater than programmed value

Therapy: ATP-Antitachycardia Pacing

BURST

RAMP
Therapy: Cardioversion Shock

- Delivers shocks from 0.1 to 30 joules synchronized on the R wave

Therapy: Defibrillating Shock

- Delivers high energy (20-34 joules) unsynchronized shock for VF
Complications Related to Pacemaker / ICD

- Complication of subclavian vein stick
 - Pneumothorax
 - Hemothorax
 - Subclavian artery puncture
 - Air embolism
 - Bleeding
 - Brachial plexus injury
 - Pain or paresthesias in arm, hand, finger

- Complications related to pulse generator
 - Pocket erosion
 - Pocket hematoma
 - Infection
 - Generator migration
 - Generator malfunction
 - Premature battery depletion

Complications Related to Pacemaker / ICD

- Complications Related to Leads
 - Perforation of RV, subclavian veins
 - Lead dislodgement
 - Twiddlers Syndrome
 - Insulation breaks, lead fracture
 - Diaphragmatic stimulation
 - Venous thrombus
 - Pulmonary embolus

- Other Problems
 - Shocks for non VT rhythms
 - Failure to deliver therapy when needed
 - Ineffective therapy
 - High defibrillation thresholds
 - Device deactivation
Ablation

- Ischemic / Scar VT
- Bundle Branch Reentrant VT
- Idiopathic VT (focal origin)
- Accessory pathway in WPW

- Treatment of choice in idiopathic VT
- Adjunct to ICD when patient receiving multiple shocks
 - Incessant drug refractory VT
Ablation Overview

Ablation

- Radiofrequency Ablation
 - Ischemic heart disease: PREFER STABLE SCAR
 - Scar Tissue: Monomorphic
 - Ischemia: Polymorphic
 - BBB reentry
 - Idiopathic VT
 - Single morphology of PVCs

- Direct Surgical Ablation or Resection of Arrhythmogenic Focus
 - VT refractory to drugs, ICD, ablation
 - Pre-op or intraoperative mapping / scar based approach

Ischemic:
Endocardial Ablation
Non Ischemic:
Can do Epicardial Ablation
Ablation for Ischemic VT

- Endocardial and epicardial mapping to identify scarred areas
 - Challenges of epicardial mapping
 - Epicardial fat
 - Coronary arteries
- Non invasive imaging (MR) pre ablation to help locate area of scar
- Two strategies for ablation:
 - The first strategy involves induction of ventricular tachycardia, mapping and targeted ablation. *In those patients who have stable VT, it is possible to map the heart during stable VT, identify the critical circuit, and eliminate it; but only about 10% of patients actually have hemodynamically stable VT.*
 - The second strategy involves substrate mapping in sinus rhythm and linear ablation to eradicate regions of abnormal myocardium with the potential to facilitate reentry
 - Most centers now use a combination of these two approaches.

Complications of Ablation

- Perforation
- Tamponade
- Venous thrombosis
- Pulmonary embolism
- Pneumothorax
- Infection – sepsis
- Bleeding
- Damage to coronary arteries
Other Treatments

- Left cervicothoracic sympathetic ganglionectomy
 - Long QT syndrome

- Revascularization
 - Obstructive heart disease (left main or proximal LAD)

Final Case Study: ECG 1
Final Case Study: ECG #2

Final Case Study: ECG #3
Final Case Study: ECG #4

Final Case Study: ECG #5
Final Case Study: ECG #6

Find Joy in Our Work

Thank you!

Handouts available at
www.cardionursing.com