Antiarrhythmic or Proarrhythmic?
What You Should Know About Antiarrhythmic Drugs

Carol Jacobson MN, RN
Cardiovascular Nursing Education Associates
www.cardionursing.com

Conduction System

- Sinus node: 60-100 bpm
- AV node: 40-60 bpm
- Bundle of His
- Right bundle branch
- Left bundle branch
- Purkinje fibers. Purkinje cells can depolarize 20-40 bpm

These pacemaker cells represent normal automaticity.
Phase 0: depolarization of cell membrane as Na⁺ enters cell; corresponds to QRS. Ca²⁺ channels open at about -50mV and Ca²⁺ enters cell.

Phase 1: early rapid repolarization as Na⁺ channels close, K⁺ opens

Phase 2: plateau maintained mostly by Ca²⁺ ions; corresponds to ST segment

Phase 3: repolarization of cell membrane as K⁺ channels open and K⁺ leaves cell; corresponds to T wave

Phase 4: resting state maintained partly by Na⁺-K⁺ pump; isoelectric line
Normal Pacemaker Activity

- Determinants of spontaneous pacemaker discharge
 - Phase 4 slope
 - Threshold potential (TP)
 - Transmembrane resting potential (TRP): -60mV in SA and AV nodes; -90mV in Purkinje cells
 - Action potential duration

Normal pacemaker activity in sinus node and AV junction is due to calcium channels
Refractory period: period of time after a cell has depolarized during which it cannot depolarize again: similar to flushing a toilet!

- **Absolute refractory period**: cell cannot respond regardless of stimulus strength
- **Relative refractory period**: cell can respond to stronger than normal stimulus but response is abnormal
- **Each part of heart has its own refractory period – AV node is longest**

Refractory Period

![Image of refractory period graph]

- **Absolute Refractory Period**
- **Relative Refractory Period**
- **Supernormal period**

Repolarization is due to potassium channels
Mechanisms of Arrhythmias

- Abnormal Impulse Initiation
 - Enhanced normal automaticity
 - Abnormal automaticity
 - Afterdepolarizations (early and delayed)
- Abnormal Impulse Conduction
 - Reentry
- Abnormal Repolarization

Abnormal Impulse Initiation

- Normal Automaticity
 - SA node cells, AV junction cells, and Purkinje cells automaticity can be enhanced by sympathetic stimulation, ischemia, hypokalemia, drugs, stretch and can result in arrhythmias.
 - Examples: sinus or junctional tachycardia
 - Impulse initiation can shift to a subsidiary pacemaker if rate of SA node slows due to vagal stimulation, drugs, ischemia, etc.
 - Examples: junctional or ventricular escape beats or rhythms due to bradycardia or AV block
Abnormal Automaticity

- Automaticity that develops in atrial or ventricular myocardial cells don’t normally have it
- Enhanced automaticity of Purkinje cells – especially during acute myocardia ischemia

Depolarization in atrial, ventricular, and Purkinje cells is due to sodium channels

- Abnormal Automaticity
 - Decreased TRP: cell is partially depolarized at rest by ischemia, hypoxia, hyperkalemia, digitalis toxicity, chamber enlargement, and diseased atrial and ventricular muscle tissue
 - Atrial and ventricular cells that do not normally have automaticity can develop it when their TRP is reduced (becomes less negative)
Early Afterdepolarizations

- Arise during phase 2 or 3 of AP – due to slow Ca++ channels
- If EAD is big enough a second upstroke occurs on phase 2 or 3 of AP and causes a “triggered” beat (i.e. a PVC)
 - Triggered beats are dependent on and arise as a result of the preceding AP – not automaticity
- If the triggered beat has its own afterdepolarization that reaches threshold, another beat occurs
 - Trains of triggered activity cause tachycardia

- Development of EADs is potentiated by bradycardia, hypokalemia, hypomagnesemia, and many drugs (including antiarrhythmics).
- They are often associated with prolonged repolarization (long QT interval)
 - Longer repolarization time allows more time for EADs to develop during Phase 2 or 3 of the AP
- Both acquired and congenital Torsades are thought to be due to EADs

QT = 800 ms
Delayed Afterdepolarizations

- Occur after repolarization of cell
- High amplitude DADs cause triggered beats and trains of triggered activity
- DAD amplitude increases with faster HR and short cycles (premature beats)
 - DAD triggered arrhythmias occur with faster heart rates
- DADs occur with increased intracellular Ca\(^{++}\) levels (digitalis toxicity, ischemia, heart failure, SNS stimulation)

Abnormal Impulse Conduction

- Reentry
 - Responsible for most clinically significant arrhythmias
 - Reentry means that an impulse travels through an area of myocardium, depolarizes it, and then reenters that same area to depolarize it again
 - In order for reentry to occur, there must be an area of slowed conduction and an area of unidirectional block
 - Unidirectional block means that an impulse can conduct in one direction through a tissue but not in the opposite direction
Macro-reentry Circuits

- Large tracts of tissue creating an anatomic circuit
 - Atrial Flutter
 - AV Nodal Reentry Tachycardia (AVNRT)
 - AV Reentry Tachycardia (AVRT) involving accessory pathway in WPW syndrome
 - Bundle Branch Reentry VT

Micro-reentry Circuits

- Small circuits within atrial or ventricular myocardium

Normal Conduction through Purkinje Fibers and Ventricle
Setup for Reentrant Arrhythmias

Abnormal Repolarization

- This is not a “primary” mechanism of arrhythmias but creates situations in which afterdepolarizations (abnormal impulse initiation) or reentry (abnormal conduction) can occur.
- Abnormal repolarization is reflected in a prolonged QT interval:
 - Causes longer Phase 2 and Phase 3 in action potential which potentiates EADs → Torsades

Normal action potential duration

Prolonged repolarization causes longer Phase 2 and 3 of AP and increases time for EADs to develop
Antiarrhythmic Drug Sites of Action

Class I: Na⁺ Channel Blockers
- Quinidine
- Procainamide (Pronestyl)
- Disopyramide (Norpace)

Class II: β Blockers ("olols")
- Lidoceaine
- Mexiletine
- Propranolol (Inderal)
- Metoprolol (Lopressor)

Class III: K⁺ Channel Blockers
- Diltiazem
- Verapamil
- Sotalol
- Betaxolol
- Nadolol
- %

Class IV: Ca²⁺ Blockers
- Dofetilide
- Procainamide
- Lidocaine
- Mexiletine

Classification of Antiarrhythmic Drugs

<table>
<thead>
<tr>
<th>Class</th>
<th>Examples</th>
<th>Actions</th>
<th>ECG</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Quinidine</td>
<td>Sodium channel blockade</td>
<td>↑QRS</td>
</tr>
<tr>
<td></td>
<td>Procainamide (Pronestyl)</td>
<td>Slow conduction velocity</td>
<td>↑QT</td>
</tr>
<tr>
<td></td>
<td>Disopyramide (Norpace)</td>
<td>Prolong repolarization time</td>
<td>↓HR</td>
</tr>
<tr>
<td>IB</td>
<td>Lidocaine</td>
<td>Sodium channel blockade</td>
<td>↓QT</td>
</tr>
<tr>
<td></td>
<td>Mexiletine</td>
<td>Works on ischemic tissue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accelerates repolarization slightly</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>Propafenone (Rythmol)</td>
<td>Sodium channel blockade</td>
<td>↑↑QRS</td>
</tr>
<tr>
<td></td>
<td>Flecainide (Tambocor)</td>
<td>Marked slowing of conduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Little effect on repolarization</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Beta blockers ("olols")</td>
<td>Beta blockade (↑ effects of SNS)</td>
<td>↓HR ↑PR</td>
</tr>
<tr>
<td>III</td>
<td>Amiodarone, Dronedarone (Multaq)</td>
<td>Potassium channel blockade</td>
<td>↑↑QT</td>
</tr>
<tr>
<td></td>
<td>Ibutilide (Corvert)</td>
<td>Prolong repolarization time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dofetilide (Tycoxin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sotalol (Betapace)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Calcium channel blockers (verapamil, diltiazem)</td>
<td>Calcium channel blockade</td>
<td>↓HR ↑PR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓automaticity in SA and AV nodes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓AV conduction</td>
<td></td>
</tr>
</tbody>
</table>
• **Class IA**: quinidine, procainamide, disopyramide
 ◦ Slow phase 0 conduction, prolong phase 3 repolarization
• **Class IB**: lidocaine, mexiletine
 ◦ Shortens repolarization slightly, works on ischemic tissue
• **Class IC**: flecainide, propafenone
 ◦ “Super slowers” of conduction (phase 0), slightly prolong phase 3 repolarization
• **Class III**: amiodarone, ibutilide, dofetilide, dronedarone, sotalol
 ◦ Prolong phase 3 repolarization

Abolishing Reentry

• Turn unidirectional block into bidirectional block by **slowing conduction velocity**
• Class IA, IB, and IC drugs that slow conduction by blocking Na\(^+\) channels
Abolishing Reentry

• **Speed conduction** through ischemic tissue to abolish unidirectional block
• Class IB drugs (lidocaine) that work on ischemic tissue may do this

[Diagram of speed conduction through ischemic tissue]

Abolishing Reentry

• **Increase refractory period** of tissue (make toilet run longer!)
• Class III drugs that prolong repolarization by blocking K⁺ channels

[Diagram of increased refractory period]
How are these drugs “anti”arrhythmic?

- **Depress phase 4 depolarization** (block Na⁺ and/or Ca⁺⁺ channels)
 - ↓ automaticity of abnormal pacemaker cells
 - Slow heart rate to suppress DADs
- **Slow conduction velocity** (block Na⁺ channels)
 - Increase block in reentry pathways
- **Increase refractory period** (block K⁺ channels)
 - Make tissues unresponsive to premature stimulation or reentry
- **Decrease effects of SNS stimulation and catecholamines** (beta blockers)
 - Decrease phase 4 depolarization rate

Types of Proarrhythmia

- **Worsening of preexisting arrhythmia**
 - Increased frequency of PVCs, VT or atrial fib
 - Conversion from nonsustained to sustained VT or from atrial fib to flutter
 - Incessant VT that can’t be terminated
- **Development of new arrhythmias**
 - Sustained monomorphic VT
 - Polymorphic VT
 - Torsade de pointes, VF
 - Atrial flutter with 1:1 conduction
 - SVT
- **Development of bradyarrhythmias**
 - Sinus node dysfunction (bradycardia, sick sinus syndrome)
 - AV block
How are these drugs “pro”arrhythmic?

- **Depress phase 4 depolarization**
 - Cause bradycardia
 - Slow HR increases risk of torsade due to **afterdepolarizations**

- **Slow conduction velocity**
 - Create block which can induce **reentry** arrhythmias
 - Cause AV block and bundle branch blocks

- **Increase refractory period and repolarization time**
 - Prolong QT interval - increase phase 2 and 3 repolarization time which increases chance of **afterdepolarizations** (torsades)

- **Create heterogeneous electrical properties in adjacent tissues**
 - Create differences in conduction time and repolarization time in adjacent areas of ventricle which is a setup for **reentry**

<table>
<thead>
<tr>
<th>Antiarrhythmic</th>
<th>Proarrhythmic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depress phase 4 depolarization</td>
<td>Depress phase 4 depolarization</td>
</tr>
<tr>
<td>• ↓ automaticity of abnormal pacemaker cells</td>
<td>• Cause bradycardia</td>
</tr>
<tr>
<td>• Slow heart rate to suppress DADs</td>
<td>• Slow HR increases risk of torsade due to early afterdepolarizations</td>
</tr>
<tr>
<td>Slow conduction velocity</td>
<td>Slow conduction velocity</td>
</tr>
<tr>
<td>• Increase block in reentry pathways to abolish reentrant arrhythmias</td>
<td>• Create block which can induce reentry arrhythmias</td>
</tr>
<tr>
<td>• Cause AV block and bundle branch blocks</td>
<td>• Cause AV block and bundle branch blocks</td>
</tr>
<tr>
<td>Increase refractory period (K⁺ blockade)</td>
<td>Increase refractory period and repolarization time</td>
</tr>
<tr>
<td>• Make tissues unresponsive to premature stimulation or reentry</td>
<td>• Prolong QT interval - increase phase 2 and 3 repolarization time which increases chance of afterdepolarizations (torsades)</td>
</tr>
<tr>
<td>Decrease effects of SNS stimulation and catecholamines (beta blockers)</td>
<td>Cause bradycardia and AV block</td>
</tr>
<tr>
<td>• Decrease phase 4 depolarization rate to slow tachycardias</td>
<td>Create heterogeneous electrical properties in adjacent tissues</td>
</tr>
<tr>
<td>• Create differences in conduction time and repolarization time in adjacent areas of ventricle which is a setup for reentry</td>
<td></td>
</tr>
</tbody>
</table>
Risk for Proarrhythmic Effects

- Drug combinations
 - Multiple antiarrhythmics used together
 - Antiarrhythmics used with other drugs that prolong QT interval
- Electrolyte imbalance
 - Hypo- or hyperkalemia
 - Hypomagnesemia
- Myocardial ischemia, cardiomyopathy
- LV dysfunction, heart failure (EF ≤ 35%)
- Changes in autonomic tone
 - Enhanced sympathetic stimulation – increased HR
 - Enhanced parasympathetic stimulation (vagal stimulation) – decreased HR

Class I
Antiarrhythmic Drugs
Na+ Channel Blockers

- IA: Quinidine, Procaainamide, Disopyramide
- IB: Lidocaine, Mexiltiline
- IC: Flecaainide, Propafenone
Quinidine (IA)

- Effects (Na⁺ channel block)
 - Slows conduction velocity
 - Prolongs refractory period (has K⁺ blocking effects)
 - Decreases myocardial excitability
 - Vagolytic effects (increases conduction through AV node)
- Indications
 - Conversion of atrial fibrillation and/or flutter
 - Maintain normal sinus rhythm after conversion
 - Suppression of serious recurrent ventricular arrhythmias
- Proarrhythmic Effects
 - Torsades de pointes (2-8%) - “quinidine syncope”
 - Increased ventricular rate in atrial flutter
 - Increases pacing & defib thresholds (ICDs)
- Other adverse effects
 - Diarrhea (hypokalemia)
 - Nausea, vomiting
 - Thrombocytopenia
 - Cinchonism: tinnitus, high-frequency hearing loss, deafness, vertigo, blurred vision, photophobia, headache, confusion, and delirium

- Quinidine induced increase in ventricular rate
 - Slows rate of atrial flutter which allows AV node to conduct 1:1
 - AV nodal blocking drug must be administered with quinidine
Proarrhythmic Effects
- Torsades de pointes (TdP)
- Increased ventricular rate in atrial flutter
- Marked slowing of conduction (widens QRS)

Other Effects
- Potentially fatal bone marrow depression
- Lupus-like syndrome (15-25% of patients on drug for >1 year)

Development of infra-His (Type II) block in patient receiving IV procainamide
- Note constant PR intervals and wide QRS indicating block below AV node
Disopyramide (Norpace) (IA)

- **Effects (Na⁺ channel block)**
 - Slows conduction
 - Prolongs refractory period
 - Decreases automaticity
 - Anticholinergic (vagolytic)
 - Peripheral vasoconstriction
 - Negative inotropic effects

- **Indications**
 - Maintain sinus rhythm after conversion of atrial flutter/fib
 - Prevent recurrence of VT or VF
 - Preexcited atrial fib

- **Proarrhythmic Effects**
 - Torsades de pointes
 - Increased ventricular rate in atrial flutter
 - Marked slowing of conduction (widens QRS)

- **Other Effects**
 - Anticholinergic effects: precipitates glaucoma, constipation, dry mouth, urinary retention
 - Heart failure (decreases contractility)

Useful in treating HOCM due to negative inotropic effects

Lidocaine (only IV), Mexiletine (oral) - IB

- **Effects (Na⁺ channel block)**
 - Suppress automaticity in ventricle (no effect on atria)
 - Works on ischemic tissue and with faster HR
 - Slightly shortens AP duration (repolarization)
 - Increases ventricular stimulation threshold

- **Indications**
 - Treatment of VT, VF (especially ischemia induced)
 - Polymorphic VT with normal or prolonged QT interval
 - Treatment of dig toxic ventricular arrhythmias

- **Proarrhythmic Effects**
 - Lidocaine rarely causes bradycardia or asystole (usually with high doses)
 - Seizures with high dose
 - Decreased dose needed with liver failure, heart failure, heart block, bradycardia

- **Other Effects**
 - CNS: tremor, drowsiness, confusion

Mexiletine rarely causes TdP
Flecainide (Tambocor) (IC)

- **Effects** (Na⁺ channel block)
 - Markedly slows conduction in atria and ventricles
 - Shortens repolarization in Purkinje fibers but slightly prolongs it in atrial and ventricular cells (widens QRS)

- **Indications**
 - Conversion of paroxysmal A Fib (not for chronic AF)
 - Maintain NSR after conversion
 - WPW arrhythmias
 - Life threatening ventricular arrhythmias
 - Used only in patients with no structural heart disease

- **Proarrhythmic Effects**
 - Exacerbates and provokes lethal VT
 - Can cause incessant VT
 - 1:1 conduction of atrial flutter
 - Increased mortality in CAST study
 - Heart block

- **Other Effects**
 - Prolongs PR, QRS, QT intervals
 - Blurred vision
 - Alters pacing and defib thresholds

Propafenone (Rythmol) (IC)

- **Effects** (Na⁺ channel block)
 - Slows conduction in all cardiac tissues
 - Prolongs effective refractory period in ventricle
 - Beta blocking effects

- **Indications**
 - Conversion of atrial fib
 - Maintenance of NSR
 - WPW arrhythmias
 - Life threatening ventricular arrhythmias
 - Only used in patients with no structural heart disease

- **Proarrhythmic Effects**
 - Increased ventricular rate in atrial flutter
 - Increased frequency or severity ventricular tachycardia

- **Other effects**
 - Exacerbation of heart failure (negative inotrope)
 - Sinus bradycardia and bronchospasm (beta blocker)
CAST
(Cardiac Arrhythmia Suppression Trial) - 1989

- Evaluated the effect of antiarrhythmic therapy (encainide, flecainide, or moricizine) in patients with asymptomatic or mildly symptomatic ventricular arrhythmia (six or more PVCs per hour) after MI.
- Patients randomly assigned to receive one of study drugs or placebo.
- Mortality rate 2-3 times higher in patients treated with active drug than with placebo even though drug was effective in suppressing PVCs.

CAST

- Encainide and flecainide accounted for most of deaths from arrhythmia and nonfatal cardiac arrests.
- Conclusion: neither encainide nor flecainide should be used in the treatment of patients with asymptomatic or minimally symptomatic ventricular arrhythmias after MI.
- Encainide no longer made
- Recommendation is generalized to all Class IC antiarrhythmics.
Class III Antiarrhythmic Drugs

- **K⁺ Channel Blockers**
 - Amiodarone
 - Dronedarone (Multaq)
 - Ibutilide (Corvert)
 - Dofetilide (Tikosyn)
 - Sotalol (Betapace)

Amiodarone

- **Actions**
 - Class III antiarrhythmic (K⁺ channel blocker)
 - Prolongs repolarization and refractory period in all cardiac tissues
 - Also has class I, II, IV effects
 - Blocks Na⁺, Ca²⁺ and K⁺ channels and beta blocking effects
 - Decreases AV conduction and sinus node function
 - Vasodilating effects (α blockade)
 - Less negative inotropic effects than other antiarrhythmics (safer in HF)
• **Indications (FDA approved)**
 - Management of life-threatening VF or recurrent hemodynamically **unstable VT** refractory to other antiarrhythmic agents

• **Off label uses**
 - Stable monomorphic VT
 - Polymorphic VT (normal QT)
 - Atrial fib
 - Pharmacological conversion to NSR
 - Maintenance of NSR after conversion (**most effective drug**)
 - Rate control
 - Prevention of post-op AF in cardiothoracic surgery
 - Wide QRS tachycardia of uncertain type
 - SVT – AV nodal reentry and accessory pathways (not first choice drug)
 - Adjunct to ICD to reduce rate and incidence of VT and reduce number of shocks

Amiodarone Side Effects

• **Proarrhythmic Effects**
 - QT prolongation but rarely causes TdP
 - Bradycardia
 - AV block

 Prolongs repolarization uniformly throughout the heart so does not create electrical gradients from one area to another.

• **Other Effects**
 - Hypotension (IV form)
 - Pulmonary fibrosis
 - Thyroid dysfunction (hypo & hyper)
 - Liver dysfunction (elevated enzymes, hepatitis, cirrhosis)
 - Corneal microdeposits
 - Photosensitivity
 - Blue skin tone
 - Peripheral neuropathy
 - Tremor, ataxia
 - GI upset
• Unusual Features
 ▫ Very lipid soluble – accumulates in adipose tissue and must saturate them before it achieves adequate blood and cardiac concentrations
 • Slow onset of action – oral may take weeks, IV faster but still prolonged
 • Steady state drug effect can take several months
 • Very slow elimination
 ▫ Half life = 26 - 107 days (average = 40-55 days)
 • Duration of action can continue for up to 50 days after drug discontinued

• Recommended baseline tests
 ▫ Chest X-ray
 ▫ Renal, liver, thyroid, pulmonary function tests

• Drug interactions
 ▫ Increases protime with Coumadin
 ▫ Increases dig levels - ↑ risk of dig toxicity
 ▫ Additive effects with class IA drugs, beta blockers, Ca^{2+} blockers
 ▫ Additive proarrhythmic effects with many drugs = ↑ risk of torsades
Dronedarone (Multiq) (Class III)

- **Effects** (K⁺ channel block)
 - Noniodinated derivative of amiodarone
 - Also blocks Na⁺ and Ca⁡⁺⁺ channels and has beta blocking effects
 - Prolongs repolarization and refractory period
- **Indications**
 - Maintenance of NSR in patients with history of paroxysmal or persistent atrial fib (not for permanent atrial fib)
- **Proarrhythmic Effects**
 - Prolongs QT but rarely causes TdP
 - Discontinue if QTc 500ms or longer
- **Other Effects**
 - Increased risk of death, stroke, and HF in patients with decompensated HF or permanent A fib
 - Potential liver and pulmonary toxicity (less than amiodarone)

Sotalol (class III and beta blocker)

- **Effects**
 - Prolongs repolarization in atria, ventricles, and accessory pathways
 - Slows heart rate
 - Slows AV conduction
 - Increases AV nodal refractoriness
- **Indications**
 - Life threatening ventricular arrhythmias
 - Prevention of atrial fib (not effective for conversion)
- **Proarrhythmic Effects**
 - Prolongs QT and can cause TdP (1.5% - 2%)
 - Beta blocker effects: bradycardia, AV block
- **Sotalol and amiodarone are the most effective drugs for long-term treatment of ventricular arrhythmias but are not as effective as an ICD for preventing SCD.**
Ibutilide (Corvert) (Class III)

- **Effects** (pure K⁺ channel blocker)
 - Prolongs refractory period and repolarization
 - Effects more prominent at slow heart rates
- **Proarrhythmic Effects**
 - Increased PVCs (5%)
 - Torsades (1.7%)
 - Polymorphic VT with normal QT
 - AV block
 - Bradycardia

- **Indications**
 - IV for rapid conversion of atrial fib or flutter
 - Works better for flutter than fib
 - Works better if arrhythmia present ≤ 7 days
 - Conversion of A fib with WPW

Check K⁺ level prior to use. Should be in high normal range.

Ibutilide induced torsades

![ECG Image of torsades de pointes](image_url)
Dofetilide (Tikosyn) (Class III)

- **Effects** (K⁺ channel blocker, ↑ slow inward Na⁺ current)
 - Prolongs refractory period and repolarization time
- **Indications**
 - Conversion of atrial fibrillation and flutter
 - Maintain NSR in patients converted from A fib/flutter
- **Proarrhythmic Effects**
 - Torsades (most occur within first 3 days of therapy)
- **Administration restrictions**
 - Initiate therapy in hospital for minimum of 3 days with continuous ECG monitoring
 - Available only to hospitals and prescribers who have received education on initiation and dosing
 - Dose adjusted based on creatinine clearance and QTc

Beta Blockers (Class II)

- **Effects**
 - Decrease automaticity (phase 4 depolarization) of normal and abnormal pacemaker sites
 - Slow HR and AV conduction
 - ↓ contractility
- **Proarrhythmic Effects**
 - Sinus bradycardia
 - AV block
- **Other Effects/Uses**
 - ↓ mortality in acute MI
 - ↓ mortality in HF
 - Hypertension
 - Treatment of HOCM
- **Indications for arrhythmias**
 - Rate control in atrial fibrillation and other SVTs
 - Termination of AV nodal active SVTs (AVNRT, WPW tachycardias)
 - May ↓ incidence of atrial fibrillation in HF
 - ↓ incidence of ventricular arrhythmias – especially ischemia or exercise induced VT
 - Treatment of congenital LQTS
Verapamil, Diltiazem
(Class IV - Ca++ channel blockers)

• Effects
 ▫ Slow HR
 ▫ Slow conduction in AV node
 ▫ Increase refractory period in AV node
 ▫ Decrease refractory period in accessory pathway (WPW)
 ▫ Little effect in ventricle (one type of verapamil sensitive VT)
 ▫ Prevent coronary artery spasm – Printzmetal’s angina

• Indications for Arrhythmias
 ▫ Rate control in atrial fib/flutter and other SVTs
 ▫ Termination of AV nodal active SVTs (AVNRT, WPW tachycardias)

• Proarrhythmic Effects
 ▫ Sinus bradycardia
 ▫ AV block
 ▫ Increased ventricular rate in preexcited A Fib (WPW) – contraindicated

Unclassified Antiarrhythmics

• Digitalis
• Adenosine
• Atropine
Digoxin

• **Effects**
 - Inhibits Na-K-ATPase pump on cardiac cell membrane → ↑ intracellular Na⁺ concentration → stimulates Na⁺/Ca²⁺ exchange → ↑ intracellular Ca²⁺ → ↑ contractility
 - Slows AV node conduction and ↑ AV node refractory period
 - Increases automaticity in atrial & ventricular cells
 - Enhances delayed afterdepolarizations

• **Indications**
 - Rate control in A fib/flutter (not drug of choice)
 - + inotrope in HF

• **Proarrhythmic Effects**
 - AV block – any degree, including atrial fibrillation with 3rd degree block

• **Dig toxic arrhythmias**
 - Sinus exit block, sinus bradycardia
 - Atrial tachycardia with block
 - Accelerated junctional rhythm
 - Bidirectional VT
 - Polymorphic VT (normal QT)
 - Fascicular VT

• Dig toxic arrhythmias

Atrial rate = 187
Adenosine

• Effects
 ▫ Increases K⁺ conductance through K⁺ channels
 ▫ Decreases Ca²⁺ currents
 ▫ Decreases sinus node automaticity
 ▫ Increases AV nodal refractoriness, slows AV conduction
 ▫ Inhibits DADs

• Indications
 ▫ Termination of AV nodal active SVTs (AVNRT, AVRT)

• Proarrhythmic Effects
 ▫ Acute AV nodal block resulting in transient asystole
 ▫ Polymorphic VT during periods of asystole

• Other Effects
 ▫ Flushing, dyspnea, chest pressure
 ▫ Exacerbation of asthma

Would you give Adenosine?

Would you give Adenosine?
Would you give Adenosine?

Atropine

Effects
- Vagolytic (blocks effects of vagal stimulation)
- Increases sinus node rate
- Speeds conduction through AV node

Indications
- Symptomatic bradycardia (sinus brady, junctional brady)
- AV block at AV node level (Wenckebach - Type I second degree AV block)

Proarrhythmic Effects
- Tachycardia
- Paradoxical slowing of rate at doses < 0.5 mg
- May slow ventricular rate in Type II AV block
- Rarely causes VT or VF

Other Effects
- May increase ischemia in ACS
Make it Stop!!