

Opening Thought

We have a hunger of the mind which asks for knowledge of all around us, and the more we gain, the more is our desire; the more we see, the more we are capable of seeing.

Maria Mitchell

3

4

Advanced Concepts in 12 Lead ECG Interpretation Part 1

Prerequisite Review Hemiblocks Chamber Enlargement Electrolyte and Drug Effects

2019

4

2019

3

Key Concepts You Should Know

- Definitions of Q, R, S waves
- Anatomy of a 12 Lead ECG
 - -Which leads look where
 - -How leads record
- QRS Axis Calculation
- Right and Left Bundle Branch Block

How Leads Record

- Positive electrode is the recording electrode or "camera lens" ٠
- Negative electrode or reference point tells camera which way ٠ to shoot
- If positive electrode sees depolarization approaching it, it records an upright complex
- If positive electrode sees depolarization heading away from it, it records a negative complex.

7

QRS Complexes

- Q wave
 - Initial negative deflection from baseline
- R wave •
 - Always an upright deflection
 - If 2 are present, second one is R'
- S wave
 - Negative deflection following an R wave

8

2019

Anatomy of a 12 Lead ECG

6 Limb Leads

6 Precordial (Chest) Leads

13

6 Precordial (Chest) Leads

Lead 1	aVR	V1	V4
+ Left Arm	+ Right Arm	+ 4 th ICS, RSB	+ L MCL, 5 th ICS
High Lateral Wall	↓*	Septal Wall	Anterior Wall
Lead 2 + Left Leg Inferior Wall	aVL + Left Arm High Lateral Wall ↓ ↓	V2 + 4 th ICS, LSB Septal Wall ↑	V5 + L anterior axillary, same level as V₄ Low Lateral Wall
Lead 3 + Left Leg Inferior Wall	aVF + Left Leg Inferior Wall	V3 + Midway Between V₂ & V₄ Anterior Wall	V6 + L midaxillary line, same level as V ₄ Low Lateral Wall

Inferior Leads

Anterior Leads

Quick Look Axis Quadrant Determination

- Evaluated QRS in Lead I and aVF
- Left hand QRS in Lead I
- Right hand represents QRS in aVF
- Hand will point in the same direction as the QRS complex

24

24

2019

Right Superior Axis Left Axis Both hands down • Left hand up **Right Hand** Left Hand **Right Hand** Left Hand Lead aVF Lead I Lead aVF Lead I **Normal Axis Right** Axis • Right hand up • Both hands up Left Hand Left Hand **Right Hand Right Hand** 25 Lead I Lead aVF Lead I Lead aVF

- Aging (changes in left anterior fascicular conduction)
- Left ventricular hypertrophy
- Acute MI (peri infarction
- Congenital heart disease
- Hyperkalemia
- Marked: Associated with left anterior fasicular block

Axis Quadrants:

Extreme (Right Superior) Axis Deviation

Calculating Degree of Axis

- Before you consider the degree of axis – always know the direction.
- Which quadrant do you expect?

2019

Calculating Degree of Axis "ESPN" Method – Step 1

E=Equiphasic

 Find the QRS complex in the limb leads which is the most equiphasic

OR

- Find the smallest QRS complex (height of R wave minus depth of S wave)
- We are looking for the lead recording closest to baseline

30

2019

"ESPN" Method – Step 2

32

"ESPN" Method – Step 3

• P/N = Positive or Negative

- Is the "Sister" lead positive or negative?

"ESPN" Method – Step 4

- Go to the AXIS Wheel
- If positive: locate the positive pole of that lead
- If negative: locate the negative pole of that lead
- What degree of AXIS is assigned to the positive or negative pole of the sister lead

34

Axis Practice

Calculating Degrees

2019

2019

Right Bundle Branch Block

- V1
 - Triphasic complex rsR' (rsr', rSR') pattern
 - Or an M shaped R wave with right peak taller
 - Or a qR pattern (In patients with septal infarct)

- V6
 - Triphasic complex
 - Large R is maintained
 - qRs with wide S waves

Note: Also a wide S wave in lead 1

42

Left Bundle Branch Block

- V1
 - Wide QS or rS complex - negative
 - Slick downstroke
 - Time to nadir <0.06 sec

- V6
 - Large R wave is maintained
 - Wide R wave with no initial septal q wave

Additional diagnostic criteria include: Broad slurred or notched R waves in leads 1, aVL, V5, and V6.

46

47

Left Anterior Hemiblock (LAHB)

Hemiblock and Fascicular Block are synonymous

Anterior fascicle is vulnerable: All blood supply from septal perforator of left anterior descending artery. 2019

Left Anterior Hemiblock

Causes

- Disease of left ventricular outflow tract
- Ischemia / injury of anterior septum or anterior lateral wall
- HTN

48

- Coronary artery disease
- Aortic valve disease
- Cardiomyopathy
- Closure of septal defect
- Surgical complication
- Lev and Lenègre diseases 2019

Implications

- May be incidental finding in a healthy person
- Not benign in a hospitalized patient
 - Associated with increased mortality and morbidity in patients with coronary artery disease or myocardial infarction
 - In association with RBBB: very high risk
- May conceal the ECG signs of myocardial infarction and left ventricular hypertroph⁴⁸

Left Anterior Hemiblock Recognition

- Lead 2, Lead 3 and aVF
 - rS pattern
 - Small r waves
 - Slightly wide / deep
 S waves
 - Increased limb lead voltage
- Lead 1 and aVL
 - qR pattern

Note: Diagnostic criteria is qR in aVL with a R peak time of \geq 45 msec

Handy method for axis tells direction of depolarization ESPN method: II and aVR are most equiphasic

Left Degree of deviation about -45

51

Note lead aVR is most equiphasic in presence of leftward axis.

Note lead aVR is the most equiphasic in presence of leftward axis.

INTERESTING: Lead 1 is most equiphasic in presence of leftward axis.

Let's Do the ESPN Method

- Lead 1 is most equiphasic
- Sister lead is lead aVF
- aVF is negative

59

Case Study ECG #1 Admission

Case Study ECG #2

ECG #2

65

65

66

Left anterior HemiBlock during acute MI

LAHB estimated to occur in approximately 7% to 15% of anterior / anteroseptal myocardial infarctions.

When combined with RBBB the stakes are higher.

Left Posterior Hemiblock

Recognition of Left Posterior Hemiblock

- rS in I and aVL
- qR in III and aVF

71

Causes of Left Posterior Hemiblock

- Does not occur in healthy people without cardiac disease
- Associated with many myocardial diseases.
- When it occurs in acute MI it is usually associated with RBBB and carries a poor prognosis
 - Highest incidence in inferior or posterior MI

2019

74

73

Other Conduction Delays

- QRS duration > 110 msec (0.10 sec) in adults is considered abnormal
- Incomplete RBBB: QRS duration 110 to 120 msec with rsr' in V1
- Incomplete LBBB: QRS duration 110 to 119 msec with presence of LV hypertrophy pattern

- QRS > 110 msec may also be a non specific conduction disturbance
- QRS width can change in response to injury or ischemia
 - Peri infarction block with a pathological Q wave
 - Peri ischemic block transient with acute injury

77

Chamber Enlargement (Hypertrophy)

2019
More on Chamber Enlargement

- Chambers can be enlarged for one of two reasons:
 - Increased pressure resulting in hypertrophy
 - Example: Aortic valve stenosis results in left ventricular hypertrophy
 - Increased volume resulting in dilatation
 - Example: Mitral valve regurgitation results in left atrial volume overload and subsequent enalrgement
- The ECG is not the ideal tool for differentiating the cause of enlargement

2019

79

Right Atrial Enlargement

- Right atrial enlargement is caused by conditions that increase volume or pressure in the right atrium
 - Tricuspid stenosis or regurgitation
 - High right ventricular pressure
 - Right ventricular hypertrophy
 - Pulmonary artery hypertension
 - Chronic lung disease
 - Pulmonic valve stenosis or regurgitation
 - Congenital heart disease

79

Left Atrial Enlargement

- Left atrial enlargement is caused by conditions that increase volume or pressure in the left atrium
 - Mitral stenosis or regurgitation
 - Systemic hypertension
 - Left ventricular failure
 - Left ventricular hypertrophy

2019

81

• Tall P waves could indicate RA hypertrophy

	6		
	1 4 1		
+ ++			+++
	1		
\land	1.111		П
/			++-
1			

 A fat P wave could indicate LA hypertrophy

2019

83

P Waves: V1

- A predominate 1st half of biphasic P wave could indicate RA hypertrophy
- A predominate 2st half of a biphasic P wave could indicate LA hypertrophy

ECG in Ventricular Hypertrophy

- ECG criteria used to identify ventricular hypertrophy are not very reliable
 - Good specificity
 - When ECG changes of ventricular hypertrophy are seen there is usually hypertrophy present
 - Very poor sensitivity
 - ECG changes are not always seen even when there is hypertrophy present
- Patients who meet one set of criteria may not meet another
- QRS voltage is influenced by age, gender, race and body build

2019

87

Large S waves in V_1 , V_2

Used with permission from C. Jacobson – CNEA & Quality Education Associates

87

Causes of LVH

- Chronic hypertension (most common)
- Aortic stenosis or insufficiency
- Hypertrophic cardiomyopathy
- Coarctation of aorta

89

2019

LVH

- Common reason for false positive ST elevation
- Anatomic LVH may be present in absence of ECG criteria
 - To ascribe ST elevation to LVH the ECG <u>must</u> meet the voltage criteria

Left Ventricular Hypertrophy • V5 and V6 (V4)

• V1 and V2 (V3)

Small r waves

- Deeper than normal S waves
- Taller than normal R waves

91

Small S waves

91

LVH Voltage Criteria

- One or more voltage criteria
- Only applicable if QRS is < 120 ms
- Precordial lead voltage criteria
 - R-wave in V5 or V6 > 26 mm
 - R-wave in V5 or V6 + Swave in V1 > 35 mm
 - Largest R-wave + largest Swave in precordial leads > 45 mm

ST – T Wave Changes Secondary to LVH

- ST elevation is generally discordant
 - ST elevation in V2 -V3 (V1)
 - ST elevation in lead III
 - ST depression in V4-V6
 - Previously called strain pattern
 - Down sloping not horizontal
- Not due to LVH
 - ST elevation in lateral leads
 - ST depression in V2-V3

2019

93

Estes Scoring System for LVH

R or S in limb lead: 20 mm or more OR			
S in V1, V2, or V3: 25 mm or more OR	3		
R in V4, V5, or V6: 25 mm or more			
Any ST shift (without digitalis)	3		
Typical "strain" ST-T (with digitalis)	1		
LAD: -15 degrees or more	2		
QRS width = 0.09 sec or more	1		
Intrinsicoid deflection V5 or V6 = 0.04 or more	1		
P-terminal force in V1 > .04	3		
Total Possible Points	13		
5 = LVH; 4 = probable LVH			
2019	9		

Sokolow and Lyon Criteria for LVH

S wave in V₁ + R wave in V₅ or V₆ (whichever is larger)

– If greater than 35 mm = LVH

Right Ventricular Hypertrophy

Used with permission from C. Jacobson - CNEA & Quality Education Associates

Causes of RVH

- Mitral valve disease
- COPD
- Pulmonary hypertension
- Pulmonic stenosis
- Tricuspid insufficiency

102

2019

RVH

- Large R waves in RV leads V₁ and V₂
- Deep S waves in the LV leads (V₅, V₆)
- Axis is often deviated to the right (> +90°)
- ST-T strain pattern in RV leads (V₁-V₂) and in leads II, III, and AVF
- Intrinsicoid deflection is often delayed to 0.05 sec in $\rm V_1\text{-}V_2$

Right Ventricular Hypertrophy

- · Right Axis deviation is one of earliest signs
- Reverse R wave progression
- Dominant R wave in V1 and V2 (QRS width is normal)
- Deep S wave in V5 and V6

104

2019

ECG Clues to RVH

- RAD > + 90 degrees
- R in $V_1 \ge 7$ mm
- R in V_1 + S in V_5 or $V_6 \ge 10$ mm
- R/S ratio in $V_1 = 1.0$ or more (R \ge S)
- S/R ratio in $V_6 = 1.0$ or more (S \ge R)
- V₁ ID = .04 or more
- Incomplete RBBB
- Right atrial enlargement

2019

RVH

Right axis deviation? + 150° R in V1 \geq 7mm? Yes: 17mm R in V1 + S in V5 or V6 \geq 10 mm? Yes: 22mm R/S ratio in V1 \geq 1 (R = or > S)? Yes S/R ratio in V6 \geq 1 (S = or > R)? No

ID in V1 \geq .04 sec? Yes: .04 Incomplete RBBB pattern? No ST-T strain in II, III, aVF? Yes Right atrial enlargement? Yes

106

106

Electrolyte Effects

- Potassium and calcium are the two electrolytes with the most influence on the ECG
- Changes are non specific
 - ECG cannot be considered diagnostic of an electrolyte abnormality
 - Electrolyte abnormalities can occur in the absence of ECG changes
- Magnesium abnormalities aren't revealed by changes on the ECG
 - Can result in cardiac arrhythmias
 - Magnesium is treatment of choice in Torsades de Pointes

108

2019

108

Action Potential of Cardiac Cells

- Phase 0: Rapid depolarization <u>Sodium Influx</u> (beginning of QRS complex)
- Phase 1: Brief, rapid initiation of repolarization
- Phase 2: Slowing of the repolarization <u>Calcium</u>

Influx – correlates with ST segment

The Electronics

- Phase 3: Sudden acceleration in the rate of repolarization - <u>Potassium Efflux</u> - Correlates with T wave
- Phase 4: Resting membrane potential

110

Hyperkalemia ECG Changes

111

Hyperkalemia

Note: Prolonged PR interval and flattening of the P wave.

Hypokalemia: ECG Changes

- Mild hypokalemia: delays ventricular repolarization
 - ST depression, flattening of T wave, inverted T wave
 - Heightened U waves, prolonged QT interval
- Increases risk for Torsades de Pointes
- Lowered threshold for ventricular fibrillation and reentrant tachycardias
- Severe hypokalemia
 - Increased PR interval
 - Increased QRS interval

2019

116

Clinical Pearls

Digoxin
 Hypokalemia increases risk of digoxin toxicity.
Class III Antiarrhythmics
 Hypokalemia increases the risk of Torsades de Pointes with potassium channel blocking medications

2019

Hypokalemia: Severe

120

Hypocalcemia: Cardiac Effects

Hypocalcemia results in the prolonged opening of the calcium channels during Phase II of the Cardiac Action Potential: Thus extending the ST segment.

Cardiovascular effects:

- Decreased contractility
- Hypotension
- Prolonged QT
 - ST segment hugging baseline for extended period (Normal up to 0.15ms)
 - QT prolongation is not due to delay in ventricular repolarization
- Torsades de pointes
- Bradycardia / heart block
- Digitalis insensitivity
- Heart failure
- Cardiac arrest

Hypocalcemia

Hypocalcemia

Hypercalcemia

- Cardiac symptoms:
 - Hypertension (may be offset by co-existing dehydration)
 - Cardiac ischemia
 - Arrhythmias (conduction abnormalities)
 - Digitalis toxicity.

ECG signs

- Shortened QT segments (secondary to shortened ST segments)
- Short ST segments can cause ST to merge with T wave (similar to what occurs with hyperacute T wave in a STEMI)
- Life threatening signs and symptoms are rare unless calcium levels reach > 14 mg/dL.

20

125

Note lack of horizontal component of ST segment and abrupt take off of T wave after QRS.

2019

Hypercalcemia

127

Clinical Pearl

Calcium imbalances can alter appearance of ECG but are less likely to cause cardiac arrhythmias than potassium imbalances.

Drug Effects

2019

129

Digoxin

- Increases vagal activity
- Digoxin decreases conduction velocity through the AV node
 - HOWEVER: Sympathetic stimulation easily overrides the inhibitory effects of digoxin on AV node conduction
- The conduction velocity increases in the atria, but decreases in the AV node.
- Automaticity is also increased, in the atria, AV node, Purkinje fibers and ventricles.

2019

Digoxin Toxicity

- EKG Changes with Toxicity
 - Increased automaticity with impaired conduction is common (example: PAT with AV Block)
- Other Signs and Symptoms of Toxicity
 - N & V (most frequent 1st sign), HA, Confusion
 - Visual disturbances: halos, change in color perception

2019		131

Note!

• Posterior wall of the left ventricle and the right ventricle are not captured on the standard 12 lead ECG.

2019

135

THE ST SEGMENT and T WAVE

ABNORMALITIES RESPESENT ABNORMALITIES IN VENTRICULAR REPOLARIZATION

2019

MUST DIFFERENTIATE BETWEEN PRIMARY OR SECONDARY ST AND T WAVE CHANGES

Primary versus Secondary Repolarization Abnormalities

Primary Changes

- Changes in the **REPOLARIZATION** phases of the action potential
- Occur in the *absence* of changes in **DEPOLARIZATION**
- Ischemia, myocarditis, drugs, toxins, electrolyte abnormalities (calcium, potassium), abrupt HR changes, hyperventilation, body position changes, catecholamines, sympathetic stimulation, temperature changes
- Normal QRS axis with an abnormal direction of the T wave usually indicates a primary change

2019

Primary versus Secondary Repolarization Abnormalities

Secondary Changes

- ST and T wave changes result from <u>changes</u> in the sequence and /or duration of ventricular DEPOLARIZATION
- Usually associated with changes in the QRS shape and duration (but not always)
- Changes the sequence of depolarization <u>altering</u> the <u>repolarization</u> sequence
- BBBs, ventricular pre excitation, ectopic and paced ventricular beats

139

140

/ 1/ 1/4	\sim
2011	ч.
201	0

139

2) Do not accept any depression in chest leads

Thresholds for ST Elevation

Gender	Age	Leads	Threshold
Men	<u>></u> 40	V2, V3	2 mm
Men	<u>></u> 40	All except V2, V3	1 mm
Men	< 40	V2, V3	2.5 mm
Women	All ages	V2,V3	1.5 mm
Women	All ages	All except V2, V3	1 mm
Men	<u>></u> 30	V3R, V4	0.5 mm
Men	< 30	V3R, V4R	1 mm
Women	All ages	V3R, V4R	0.5 mm
Men	All ages	V7 thru V9	0.5 mm
Women	All ages	V7 thru V9	0.5 mm

Thresholds for ST Depression

Gender	Age	Leads	Threshold
Men	All ages	V2, V3	0.5 mm
Women	All ages	V2, V3	0.5 mm
Men	All ages	All except V2, V3	1 mm
Women	All ages	All except V2, V3	1 mm

ECG B (2 hours later)

ECG Assessment Priorities

When Assessing for Injury or Ischemia

- 1) Assess for ST segment elevation first - ST elevation and need for reperfusion
- 2) Assess for T wave inversion next
 - Non STEMI or
 - Unstable angina
 ischemia

NonStemi: Troponin Abnormally Elevated Unstable Angina: Troponin Normal

147

- 3) Assess for ST segment depression thirdly
 - Supply and demand ischemia (often in V5 regardless of vessel occlusion)
 - OR reciprocal changes to ST elevation
 - Clinical application: Supply and demand ischemia is typically not the primary problem in patients at rest

2019

Hyperacute T Waves - STEMI

Post Hyperacute T Waves - STEMI

J Point Elevation

T Wave Inversion: Key Points

- T wave should be positive in lead I and II
- Normal inversion is rare in V2 V6
- Inversion in lead III, aVL and aVF may be normal
- Inversion in V1 is common - always compare to previous ECG

T Wave Inversion <u>Associated With</u> Ischemia /Infarction

- Deep T wave Inversion
- Disproportionate T wave Inversion (in relation to QRS voltage)
- New or changing T wave Inversion
- QTc usually increased

153

2019

154

More on T Wave Inversion

• T wave inversion is a "warning" for ACS (either unstable angina or NonSTEMI) unless.....

-T wave inversion occurs after a STEMI

- After a STEMI T wave inversion is expected
- Terminal T wave inversion is a sign of reperfusion after a STEMI

155

 Symmetrical T wave inversion will develop after terminal T inversion

0	0	А	0
2	υ	1	Э

Wellen's Syndrome

- T wave inversion occurring in leads V2 and V3
 - With or without other ST/T wave changes in the other precordial leads
 - In patients with a history of intermittent symptoms consistent with unstable angina
 - Often during pain free period
 - 76% symmetrical T wave inversion
 - 24% terminal T wave inversion
- Has also been referred to as LAD coronary T-wave syndrome
- Associated with recent injury or ischemia caused by a LAD lesion (proximal to septal perforator), and placing the patient at risk for anterior wall myocardial infarction in the absence of coronary revascularization

2019

157

Practice ECG 2 of 3

Live Content Slide When playing as a slideshow, this slide will display live content

Poll: When evaluating the ECG in a patient having chest pain you note ST elevation in aVR and lead V1 with diffuse ST segment depression in the remainder of the limb leads an precordial leads.

Non Specific ST – T Wave Changes That May Indicate Ischemia

- Inverted U waves
- Prolonged ST Segment
- Flat T waves
- Non specific changes in particular need correlated with the patient's clinical condition

Interpreting the ECG

EVOLUTION OF MI

ECG Changes After STEMI

Non Reperfused	Reperfused
 T wave enlargement ST elevation Q wave formation or loss of R wave amplitude ST stabilization 	 T wave enlargement ST elevation Earlier ST normalization and stabilization T wave inversion may accelerate
 T wave inversion (within 48 - 72 hours) before ST resolution ST resolution 	 Terminal T wave inversion initially T waves deepen symmetrically over time
 T waves stays inverted for period of time (takes weeks to months) Possible disappearance of Q waves 	 I waves stays inverted for period of time (takes weeks to months) Q wave development is less pronounced or even absent
2019	169

ECG Evolution of a STEMI

- ST segment back to baseline occurs as result of myocardial cell death and reduction in injury current.
 - One of final evolutionary changes.
 - Abrupt resolution of ST elevation indicates reperfusion.
 - Persistent ST elevation is predicator of adverse outcomes.

171

2019

171

Inferior Posterior STEMI

36 hours Post Anteroseptal STEMI

Practice ECG 2 of 2

Note: Importance of ST segment monitoring or serial ECGs.

Interpreting ECG

RECIPROCAL CHANGES

Reciprocal Changes

- Primary Change is most important look for:
 - ST Elevation: ACS (STEMI)
 - T Wave Inversion: ACS (Non STEMI or UA)
 - ST Depression (ischemia)

• Reciprocal Changes

- ST segment depression in leads reciprocal (opposite) those with ST elevation
- Reciprocal changes can help confirm primary changes

Clinical Application:

Before calling ST segment depression ischemia – double check the reciprocal leads for ²missed ST segment elevation.

Lead 1	aVR	(V1)	V4
Left Arm	Right Arm	4 th ICS, RSB	L MCL, 5 th ICS
High Lateral Wall		Septal Wall	Anterior Wall
	Posterior Wall		
Lead 2	aVL	V 2	V5
Left Leg	Left	4 th ICS, LSB	L anterior axillary,
Inferior Wall	High Lateral Wall	Septal Wall	same level as V_4
			Low Lateral Wall
Lead 3	aVF	V 3	V6
Left Leg	Left Leg	Midway Between	L midaxillary line,
Inferior Wall	Inferior Wall	V ₂ & V ₄	same level as V_4
		Anterior Wall	Low Lateral Wall
2019			182

6 Precordial (Chest) Leads

Normal Septal Q Waves

Abnormal QR Waves

- Abnormal Q Waves
 - <u>></u>0.04 sec (1 small box)
 - > 25% of R Wave

197

197

Abnormal QS Waves

Q Waves & Diagnosis of AMI

- Q waves in leads with ST elevation
 - Supports diagnosis of STEMI
 - QR Pattern
 - More likely acute
 - Smaller area of infarct
 - QS Pattern
 - More likely old MI or late in course
 - Larger area of infarct
 - May represent ventricular aneurysm
- Q waves in leads without the ST elevation
 - Second MI
 - Higher risk for LV dysfunction

2019

199

Q Waves

199

- Q waves may be present very early in STEMI and should not eliminate reperfusion
 - Q wave or loss of R wave may occur within 1 hour in anterior wall MI
- Q waves may disappear
- STEMI more likely to produce Q waves than NSTEMI
- Q Wave does not necessarily indicate transmural involvement

Welcome Back! Let's have a great afternoon.

2019 205

INJURY AND ISCHEMIA WITH BBB

2019

More on New or Presumed New LBBB

- Left BBB is common reason for delayed or withheld reperfusion
- New or presumed to be new LBBB and clinical signs of AMI may be indication for reperfusion therapy
 - Acute LBBB from MI is uncommon
 - LBBB sign of underlying structural heart disease
 - Increased risk of CV mortality
- Old LBBB with increased ST elevation or specific indictors should also receive reperfusion

USING VECTORS TO DETERMINE CORONARY OCCLUSIONS

ST Segment Deviation Vector in Anterior Wall MI

Occlusion proximal to first septal and first diagonal branch

- Primary area of injury is basal part of LV
- ST segment deviation vector points to base (to lead aVR and aVL) and away from apex (inferior leads)
- Occlusion between first septal and first diagonal branch
 - Dominant area of injury in high anterolateral area of LV
 - ST segment deviation vector points toward aVL and away from lead II

Septal branch perfuses sub AV nodal conduction system

217

218

2019

The ECG in Anterior Wall MI

LAD OCCLUSION BETWEEN THE FIRST SEPTAL AND FIRST DIAGONAL BRANCH

Apart from ST elevation in precordial leads V₂ to V₅, the frontal ST vector points toward aVL and away from III.

- . ST elevation in I and aVL
- ST depression in III
- ST isoelectric in II

2019

219

ST Segment Deviation Vector in Anterior Wall MI

- Occlusion distal to the diagonal branch
 - ST segment deviation vector points to apex
 - ST elevation in inferior leads (II > III)
- Left Main Coronary Artery Occlusion
 - ST segment deviation vector points to lead aVR
 - ST elevation in aVR
 - Less ST elevation in V1
 - ST depression in leads V2 – V6 (posterior wall injury) – circumflex occlusion

Limitations of ST Segment Deviation Vector Analysis

- Previous MI / preexisting ST / T wave abnormalities
- Multi vessel disease
- Altered ventricular activation
- Dominant or small coronary arteries
- Coronary artery anomalies

2019			223

Anterior MI

- Proximal LAD
 - Proximal to first diagonal
 Anterolateral
 - Proximal to first septal perforator
 - Anteroseptal
- Mid LAD
 - Anterior MI

LAD: Anterior Wall, High Lateral Wall, Septum

225

Complications of Anterior MI

- Myocardium at risk
- Mortality and morbidity
- Post Infarction ejection fraction

Complications of Anterior MI

- Tachycardia
 - Sinus tachycardia
 - Atrial tachycardia
 - Ventricular tachycardia
- Right BBB and left anterior hemiblock
- Complete heart block

- Ventricular septal defect
 - New loud systolic murmur
- Cardiogenic shock
- Long term ventricular modeling and heart failure

Normal V1-6: R Wave Progression

- The R wave becomes taller and the S wave becomes smaller as the electrode is moved from right to left
- This pattern is called R wave progression

229

229

2019

2019

230

230

Lateral Wall MIs

- Isolated MI frequently missed
- ST elevation may be < 1 mm
- ST elevation may only be in aVL
- Myocardium at risk and mortality benefit

- Lateral Wall
 - First diagonal branch of LAD
 - Obtuse marginal branches of circumflex
 - Note: Circumflex occlusion produces ST segment elevation on standard ECG less often than RCA or LAD occlusions

Inferior MI

- Proximal RCA = Inferior LV + RV
- Occlusion proximal to the marginal branch = Right ventricular MI
- Occlusion of posterior descending artery = Posterior MI

Right versus Left Dominance

235

236

235

2019

Inferior MIs

- Variations
 - Inferior posterior
 - Inferior with RV
 - Inferolateral (often with circumflex)

Complications

- Sinus Bradycardia, 2nd Degree HB Type I
- Increased parasympathetic activity
- Papillary muscle rupture with posterior wall involvement
- RV failure with RV involvement

ST Changes in Inferior MI

- ST elevation leads II, III, aVF
 - Lead III > II (RCA occlusion)
 - Lead II > III (Circumflex occlusion)
- ST depression in aVL
- ST elevation <a>> 0.5mm in inferior leads should be considered abnormal until proven otherwise

2019	237
237	
The ECG in Inferoposterior MI	
Right coronary artery MI	Circumflex coronary artery MI

RCA occlusion: Frontal ST deviation vector points to III, resulting in ST elevation in III > II CX occlusion: Frontal ST deviation vector points to II, resulting in ST elevation in II > III

Posterior MI

- Note: MRI studies suggest that ECG evidence of posterior injury may actually reflect more anatomical injury of the lateral wall. However, ECG interpretation guidelines recommend we continue to refer to this type of MI as posterior.
- Coronary arteries and the posterior wall
 - RCA (responsible for Inferior / Posterior STEMIs)
 - Posterior descending coronary artery
 - Circumflex (responsible for isolated posterior STEMI)
 - PDA
 - Marginal Branch

2019

241

- Maximal ST depression
 <u>></u> 2 mm in V1 V3 may be 90% specific for posterior MI
- T waves usually remain upright
- Persistent ST depression is more commonly due to posterior STEMI than LAD disease......
- Anterior UA/ NonSTEMI is most likely when T wave inversion in present in V1-V4

242

241

Posterior MI

- Reperfusion is indicated if true posterior MI is confirmed
 - Even with absence of ST elevation on standard 12 lead ECG
 - 3.3% to 8.5% of MIs are isolated posterior STEMI (Smith et al., 2002)
- Non reperfused posterior MI
 - Tall R waves in V1-V3

Remember: Increased risk for papillary muscle ischemia or rupture. May hear new holosystolic murmur.

-

243

RV Infarct

Approximately 1/3 of Inferior MIs

 Occlusion proximal to marginal branch of RCA

Recognition

- > 0.5 mm ST elevation in V4R
 - Men < 30 years of age (> 1.0 mm ST elevation in V4R)
- Suspect when elevation in V1 but not in V2
 - However, cannot rely on if there is simultaneous RV and posterior involvement
- Combination of elevation in V4R and V1 is very specific to RV infarct

247

• Reciprocal changes to RV injury may be seen in low lateral leads 2019

RV Infarct

- Pathophysiology of RV infarct is complex
 Ventricle can be noncompliant or distensible
- Treatment of hypotension in RV infarct
 - Avoid diuretics and venous vasodilators
 - IV fluids to CVP of 15 mmHg and PAOP of 15 mmHg (Brenner & Tschopp, 2009)
 - Caution with too much fluid:
 - Distendability
 - Septal displacement
 - Need for inotrope when fluid loading not successful
 - Atrial fibrillation and bradyarrhythmias need treated

249

Labeling the Additional Leads

Note: Verify that electronically recorded 12 leads are able to labeled correctly.

Original Chest Leads	New Chest Leads		
V1	V4R		
V2	V5R		
V3	V6R		
V4	V7		
V5	V8		
V6	V9		

Right Sided and Posterior Quick Look on Bedside Monitor				
Right Sided Lead	Posterior Lead			
 Place electrode in V4R Position 5th ICS Right MCL Attach V monitoring lead (Brown Lead) to electrode Assure monitor lead selector is on V Run strip and clearly mark "V4 Right Chest Lead"	 Place electrode in V8 position Under tip of left scapula same level as V6 Attach V monitoring lead (Brown Lead) to electrode Assure monitor lead selector is on V Run strip and clearly mark "V8 Posterior Lead" 			
255				

- Inferior STEMI: ST Elevation in II, III, aVF
- Reciprocal depression in Leads I and aVL
- ST Depression in V2 and V3: Reciprocal changes from Posterior STEMI
- Ideal patient for a 16 lead ECG to assess for injury to the right ventricle and posterior wall of the left ventricle.

Same Patient as Previous 12 Lead:

Due to hypotension the point of care nurse used the V lead from bedside monitoring to record a V4R lead. This recording confirms RV injury and this knowledge was used to guide treatment.

We become what we repeatedly do!!

Practice, Practice, Practice !!

Practice ECG #1a

Practice ECG #1b

Practice ECG 3b

Practice ECG 3d

Practice 4c Day 7 4:45 am

Practice ECG # 5

2019

278

Advocate and Also Be Aware

- Normal Variants
 - Early repolarization
 - Persistent juvenile T waves
- ECG Mimics
 - Hypertrophy
 - LBBB
 - Digitalis
 - Hyperkalemia
 - Adams Stokes attack
 - Hypertrophic cardiomyopathy
 - Central nervous system disease
 - Intracranial bleed
 - Post extrasystolic T wave change
 - Blood glucose abnormalities

- Pain and ECG Mimics
 - Pericarditis / Myocarditis
 - Pulmonary Embolism
 - Aortic Dissection
- Pain Mimics
 - Aortic Dissection

Always correlate the ECG with the patient clinical picture!!

2019

279

ECG / Pain Mimics

2019

280

Abnormalities of Repolarization

- Abnormalities in ST segment, T Waves and QT interval reflect abnormalities in ventricular repolarization
- Coorelate with phase II and III of the action potential.

2019		

281

2019

Early Repolarization

- Precordial ST elevation in most adults
 Up to 90%
- Early repolarization most common normal variant
 - Roughly 5-13% of population
 - African American men < 50 years of age
 - Athletes

? Increased Risk of Sudden Death

2019

283

2019

- Proposed classification of ER
 - Type 1: associated with ER in the lateral precordial leads. This form is common among healthy male athletes and is thought to be largely benign.
 - Type 2: associated with ER in the inferior or inferolateral leads and is associated with a moderate level of risk.
 - Type 3: associated with ER globally in the inferior, lateral, and right precordial leads, and appears to be associated with the highest relative risk (though the absolute risk of sudden death remains small).

Early Repolarization

Pericarditis: ECG Findings

- Other ST changes
 - ST depression in aVR
 - Minimal depression V1, III, aVL may exist
- PR Segment depression
 - PR depression most common in II, aVF and V4 V6
 - PR elevation > 0.5 mm in aVR
- Electrical Alternans
- Voltage changes with pericardial effusion or tamponade

293

Stages of Pericarditis
Stage I
 ST elevation
 More concave
 Lasts up to 2 weeks
Stage II
 ST to baseline
 Decrease T wave amplitude
 Lasts from days to several weeks
Stage III
 T wave inversion
 Starts at end of second to third week
Stage IV
 Gradual resolution
 T wave may stay inverted up to 3 months
2019 294

Pericarditis

- Diffuse Pericarditis
 - Easiest to differentiate with both pain and ECG assessment
- Localized Pericarditis
 - May have reciprocal changes

295

2019

295

Classic Pericarditis

Pericarditis

Massive PE

- Present in less than 5% of patients presenting with PE (Kucher, Rossi, De Rosa, & Goldhaber, 2006).
- Involves both the right and left pulmonary arteries or causes hemodynamic collapse
- Presenting systolic BP of < 90 mmHg
- Mortality rates range from 30% to 60% and most deaths occur within the first 1 to 2 hours (Ouellette et al., 2013; Wood, 2002).

299

2019

299

ECG in PE – Acute Cor Pulmonale Other: Changes in only 20% of Large R waves in V₁ and pts ٧, Non specific Deep S waves in leads V₅ - ST or atrial fibrillation and V_6 Right atrial enlargement Small T wave inversion (tall P waves in lead II or in limb and chest leads dominant first ½ of P • S1,Q3,T3 wave in V1) - Incomplete right bundle RV hypertrophy branch block (RBBB) Right axis deviation Delayed intrinsicoid deflection in leads V₁ 300 2019 and V₂

Pain Mimics

Aortic Dissection

Pathophysiology

- Intimal tear
- False channel
- Risk of rupture: outer wall
- Dissection hematoma – occlusion of vessels
 - Ascending aorta
 - Descending aorta

303

2019

303

Complications of Dissection

- Aortic regurgitation from retrograde dissection involving aortic valve or from aortic dilatation.
- MI from retrograde coronary artery dissection.
- Cardiac tamponade from ascending aorta or aortic arch rupture.
- Intraplerual rupture from descending aortic dissection ruptures into intrapleural space – most commonly left sided.
- Retroperitoneal bleed from rupture of abdominal aorta dissection.
- Stroke from brachial artery compromise.
- Paraplegia, reduced blood flow to kidneys, bowels, and lower extremities from compromise of arterial branches.

305

306
Occlusion of RCA by Aortic Dissection

DIFFERENTIATING SUPRAVENTRICULAR & VENTRICULAR TACHYARRHYTHMIAS

Ectopy VS Aberrancy

SVT with aberrancy

- SVT with RBBB Aberration
- SVT with LBBB Aberration

Ventricular tachycardia

- VT with LBBB Pattern
 - Right VT
- VT with RBBB Pattern

 Left VT

2019 **311**

> Acute Management of Wide Complex Tachycardias

- Wide complex tachycardia presumed to be VT if diagnosis is unclear
- DC cardioversion with sedation if hemodynamically unstable
- Don't assume VT cannot be well tolerated!
- The rate, size of the heart and presence of additional complications are often more important than the source of the tachycardia

✓ Check the patient (need to defib?) ✓ Check the blood pressure (need to cardiovert?) ✓ Check the ECG (determine the rhythm)

2019

Criteria for Differentiating Ectopy from Aberrancy

- Patient history / assessment
- QRS Width
- Concordance
- AV Dissociation
- Axis
- Morphology

Note:

VT is much more common than supraventricular tachycardia with bundle branch aberration. In wide QRS tachycardias VT is the right answer up to 80% of the time. A wide complex tachycardia is always considered ventricular in origin if the diagnosis is uncertain

2019

313

313

Patient History

- Acute ischemia / injury (Abnormal automaticity)
- Post myocardial infarction / ischemic cardiomyopathy (Reentrant circuit within myocardium)
- Non ischemic dilated cardiomyopathy (Bundle branch reentrant VT)

QRS Width

- The wider the QRS VT is favored However:
- SVT with LBBB will have a wider QRS than SVT with RBBB
- Other causes of SVT with wider than expected QRS: antidromic tachycardia and patients on Class I antiarrhythmics or amiodarone
- Not all VT is significantly wide
 - VT originating from septum more narrow than VT from free wall
 - If QRS more narrow than sinus rhythm = VT

315

AV Dissociation • Independent atrial and ventricular activity (AV dissociation) is diagnostic for ventricular ectopy **Only seen in 30% VTs** Ventricular tachycardia may also have retrograde P ٠

Waves (retrograde P waves do not confirm VT)

316

315

Ventricular tachycardia <u>rarely</u> occurs with normal axis

Antidromic tachycardia

Right Ventricular Ectopy Lead V1

Bundle Branch Block Morphology in Lead V6

Ventricular Ectopy Morphology in Lead V6

327

Methodology for Differentiation Using ECG / Bedside Monitoring

Practice ECG 8

12 Lead ECG Post Inferior STEMI on Arrival to CCU Vital Signs Stable

- 12 lead ECG Interpretation:
 - Atrial Fibrillation
 - RBBB with Left Anterior Hemiblock ??? •

2019

337

SVT RBBB SVT Practice ECG 9 LBBB 12 Lead ECG Post Inferior STEMI on Arrival to CCU RVT LVT Vital Signs Stable I 12 lead ECG Interpretation: Non Specific Intraventricular Conduction Delay?? 껆 Cheel- 10 mm/m # 60- 1.5-100 #w # Links 338 2019

339

339

Linking to the Bedside Monitor Practice ECG 2

Linking to the Bedside

Dissociation or Negative Concordance Extreme Axis or V6 Negative

SVT RBBB

SVT

LBBB

Dissociation or Negative Concordance Extreme Axis or V6 Negative

2019

343

343

Linking to the Bedside Monitor Practice ECG 6

Dissociation or Negative Concordance Extreme Axis or V6 Negative

2019

Linking to the Bedside Monitor Practice ECG 8

Linking to the Bedside

Dissociation or Negative Concordance Extreme Axis or V6 Negative

345

SVT RBBB

SVT

LBBB

Case Study

Morphology Challenges

The Not so Common: Congenital and Acquired Long QT, Brugada, WPW, Arrhythmogenic Cardiomyopathy

Be on the Lookout

354

2019

Arrhythmogenic Cardiomyopathy

2019

355

Arrhythmogenic Cardiomyopathy: **ECG Signs**

- ECG
 - T Wave inversion in leads V1-V6
 - Epsilon wave
 - VT with LBBB pattern
 - Conduction delays through right bundle

356

QT Interval Evaluation

Expected QTc Intervals

	1 to 15 Years	Adult Males	Adult Females
Normal	< .44	< .43	< .45
	seconds	seconds	seconds
Borderline	.44 to .46	.43 to .45	.45 to .47
	seconds	seconds	seconds
Prolonged	> .46	> .45	> .47
	seconds	seconds	seconds

Source: Moss AJ, Robinson JL. Long QT Syndromes. Heart Dis Stroke. 1992;309-314

QTc .50 sec (500 msec) or more is dangerous and should be considered an ominous sign of impending Torsade's de Pointes.

359

360

359

2019

QT Interval

- Measured from beginning of QRS complex to the end of the T wave
- Reflects both ventricular depolarization (QRS) and ventricular repolarization (T wave)
- Used most specifically to reflect ventricular repolarization

Heart Rate Adjustment

- QT interval needs to be adjusted for HR
- QT does not adjust to HR on a beat to beat basis
- Dynamic changes are most important
- Abnormal findings are uncovered during abrupt changes in the R to R
- Irregular heart rhythms (i.e. atrial ²⁰¹⁹ fibrillation) remain a clinical challenge

362

QT in Practice (QTIP Study)

- QT prolongation > 500 msec common in hospitalized patients (ICU and progressive care) (24%)
- QT prolongation associated with longer length of stay
- QT prolongation associated with almost 3 times the odds for mortality

(Pickham et al., 2012, Critical Care Medicine)

Cardiac Ion Channel Abnormalities

- Long QT Syndrome (LQTS)
- Brugada disease
- Idiopathic short QT
 - -< 300 to 340 msec
- Diagnosed by family history and ECG

Note: Patients with heart failure can develop channelopathies

2019

365

LQTS

- QTc > 450 ms
- Genetic defect in either potassium (LQT1 or LQT2) or sodium (LQT3) channels
 - KCNQ1 (LQTS type 1), KCNQ2/HERG (LQTS type 2) and SCN5A (LQTS type 3)
 - Autosomal dominant trait
 - 1 in 2500
 - Delayed repolarization (1 and 2)
 - LQT1 and LQT2 = 95%
 - Beta blockers (Nadolol Type 2)
 - LQT3 = 5%
 - Beta blockers may be harmful (Propanolol; other antiarrhythmics)
 - Events during sleep or episode of bradycardia
- QT prolongation important risk factor for SCD
 - Untreated mortality of 50%
 - QTc < 440 ms / < 5%
 - QTc 460 to 500 ms / 20%
 - QTc > 500 ms / 50%

Each Type of Congenital QT Looks Differently in Terms of T Wave Morphology

- Interestingly some acquired Torsade's may be preceded by T wave morphology looking like congenital LQTS
- Long QT 1: wide, broad-based T waves
- Long QT 2: low amplitude, often notched T waves
- Long QT 3: long ST segment and tall, peaked T waves

367

367

Resting ECG may not show QT prolongation.

LQT1 episodes in response to exercise of exertion: particularly swimming Prepuberty males more events than females; female adults more than adult males.

11 year old male LQT1 patient ECG showing a normal T wave pattern and average QTc of about 480 msec.

Brugada Syndrome

- Inherited ion channelopathy.
 - Disorder of increased sodium influx
 - Potassium and calcium can also be involved
- Autosomal dominant
 - Most common in Southeast Asian countries
 - 90% of patients are male

• Predispose to Syncope or sudden cardiac death (SCD)

- Events occur more commonly at rest or during sleep
- Events occur in 3rd or 4th decade of life
- Increased risk for SCD
 - Syncopal episode
 - Early repolarization pattern on ECG
 - Family history of SCD
 - Asymptomatic patients at low risk for SCD
- Treatment
 - ICD
 - Quinidine (class 1) or isoproterenol for VT Storm

371 371

371

Diagnosis of Brugada Syndrome

- 3 characteristic ECG patterns identified
- If type 1, 2 or 3 ECG findings are present one of the following must also be present to consider a diagnosis of the BS:
 - Documented ventricular fibrillation
 - Self-terminating polymorphic ventricular tachycardia
 - Family history of sudden cardiac death at < 45 years
 - Type 1 ST-segment elevation in family members
 - Electrophysiologic inducibility of VT
 - Unexplained syncope suggestive of a tachyarrhythmia
 - Nocturnal agonal respiration

ECG Findings With Brugada Syndrome			
Type 1 Type 2	Coved ST elevation ST gradually descends to an inverted T wave Present in more than one right precordial lead V1-V3 Associated more ventricular events T wave remains positive or biphasic The terminal portion of the ST-segment is elevated ≥ 1 mm Present in more than one right precordial	²² 	
Type 3	Iead V1-V3 T Wave is positive The terminal portion of the ST-segment is elevated < 1 mm Present in more than one right precordial lead V1-V3		

375

Torsade's De Pointes

- Recognition of this life-threatening arrhythmia is important because it is not treated like other VTs
- Two groups: Acquired and congenital
- Acquired
 - Drugs prolonging repolarization
 - Most often as a result of blocking the potassium channel
 - Electrolyte abnormalities
 - Low potassium
 - Low magnesium
 - Severe bradycardias / pauses

Dangers of Abnormal Repolarization

- Places of unequal repolarization can set up for reentrant tachyarrhythmias
- There can be the development of early after depolarizations

377

What are Early After Depolarizations?

- Right after repolarization (or during) there is a transient sub threshold depolarization
 - Can occur during Phase II or III of the cardiac action potential
 - If an early after depolarization reaches threshold a second upstroke occurs and a <u>triggered</u> beat follows
 - The triggered beat may have its own after depolarization that reaches threshold – thus causing another triggered beat
- Thought to be etiology of Torsade's de Pointes
 - Acquired
- ₂₀₁₉ Congenital

379

379

More on

Early After Depolarizations

- Precipitating Factors
 - Hypokalemia
 - Hypomagnesemia
 - Heightened sympathetic tone
 - -Slow heart rate
 - Prolonged repolarization (QT interval)

TdP initiated by R-on-T phenomenon caused by LQTS (QT=500ms).

381

382

2019

381

More on Drugs that Prolong Repolarization (blocking of potassium channel efflux)

- www.QTdrugs.org
- www.torsades.org
- Class Ia and Class III antiarrhythmics
- Antihistamines
- Antibiotics
- Antipsychotics
- Antidepressants
- Sedatives
- Gastric motility agents
- Anticancer agents
- Opiate agonists

✓ Risk

✓ Possible Risk

✓ Conditional

Other Risk Factors for Torsade's de Pointes

- Rapid (IV) administration of QT prolonging agent
- Renal or hepatic dysfunction
- Female gender (particularly for drug induced)
- Advanced age
- Anorexia
- Heart disease
- Poly pharmacy

2019		383

2019

Warning signs for Torsades de Pointes

- Increase QTc from predrug baseline of 60 ms,
- Marked QTc interval prolongation .500 ms
- T-U wave distortion that becomes more exaggerated in the beat after a pause
- Visible (macroscopic) T-wave alternans
- New-onset ventricular ectopy, couplets
- Nonsustained polymorphic ventricular tachycardia initiated in the beat after a pause.

387

Torsade's de Pointes

- Class I
 - Discontinue offending drugs
 - Note: Class IA drug induced TdP usually appears soon after the initial administration of the drug

Magnesium is

considered treatment

of choice.

- Correct electrolytes
 - Magnesium
 - Potassium
- Increase HR
 - Isoproteronol

2 mcg/min then titrate to HR of 100 beats per minute

- Temporary pacing at rate of 100 to 110
- Permanent pacing if bradycardia or CHB cannot be resolved.
- Defibrillation if sustained

2019 However, continue to assess for and treat cause

388

More on Magnesium in Torsade's de Pointes

- 2 Gm IV bolus over 1-2 minutes
 - Followed in 15 minutes by another bolus if necessary
 - May start continuous infusion at rate of 3-20 mg/min
- Benefit occurs without shortening of QT interval and in presence of normal Magnesium level

389

2019

389

Case Example

QT Interval Case Example

- Patient admitted for syncope after having motor vehicle crash while driving.
- Long standing history of paroxysmal atrial fibrillation on dofetilide (Tykosin) for several years.
- Recent chemotherapy for breast CA resulting in a reduction of EF.
- Recent increase in carvedilol and lisinopril per general cardiology to improve EF.
- Next slide is admission ECG. Note the QTc interval..

- 1. Strip 1: QTc consistent with admission ECG.
- 2. Strip 2: Marked QTc prolongation when patient asleep.
- Initial run of ventricular tachycardia initiated by PVC firing at end of T wave, 2019

Same patient with sustained Torsades de Pointes. Treated effectively with 2 grams IV Magnesium (magnesium level was normal at baseline). Magnesium is the drug of choice to stabilize the cardiac membrane. Dofetilide (Tikosyn) was also discontinued.

Note: Although the patient had been on dofetilide (Tikosyn) for several years, the recent change in ejection fraction and increase in beta blocker therapy increased her risk for Torsades de Pointes.

Polymorphic VT with normal QT:

397

Special Considerations: Polymorphic VT (normal QT)

- DC cardioversion with sedation when unstable
- IV beta-blockers if ischemia suspected
 - Improve mortality
- IV amiodarone in absence of abnormal repolarization
 - Amiodarone better than placebo
 - Magnesium not better than placebo
- · Urgent angiography to exclude ischemia
- Lidocaine may be reasonable if ischemia suspected
- Check electrolytes
- Consider any other potential reversible cause

Atrioventricular Reciprocating Tachycardias (AVRT)

- Requires the presence of a bypass tract or accessory pathway
- Most common: Kent bundles in "Wolf Parkinson White" Syndrome
- Left lateral free wall, right lateral free wall, and posterior septum

399	2019

399

Concept of Pre-excitation

 Termed Pre-excitation because some conduction occurs via the Kent bundles in addition to the normal pathway; because conduction via the Kent bundles is faster than via the AV node the ventricles are pre-excited

• This produces a "delta wave" on the EKG

- Fusion beat
 - Short PR
 - Wider than normal QRS

WOLFF-PARKINSON-WHITE (WPW) SYNDROME

Evidence of Pre-excitation in SR

Can cause dyssynchrony and LV dysfunction from premature septal activation

Known SVT or symptoms of SVT

2019

401

Delta Wave of Pre-excitation Syndrome

401

402

Atrioventricular Reentrant Tachycardia (AVRT)

Orthodromic

- 90 to 95%
- Traveling down the AV junction and up an accessory pathway
- Sequential depolarization
- <u>Narrow because travel via</u> <u>the AV node</u>
- More common than antidromic tachycardia

• Antidromic

- 5%
- Activation of the ventricles is initiated by impulses descending via an accessory pathway
- Ventricular depolarization begins at an ectopic site in the myocardium and returns via the AV node

Presence of pre-excitation on 12 lead and paroxysmal palpitations.

62 year old male presenting to ED 4 hours after onset of palpitations. BP 110/72, pale and anxious.

Antidromic Tachycardia The less common form of atrioventricular

- The less common form of atrioventricular reentrant tachycardia
- The path of tachycardia passes from the atrium to the ventricle via the accessory pathway (Kent bundles) and returns to the atrium via the AV node
- The QRS complex is wide because antegrade conduction bypasses the AV node
- Antidromic tachycardia is very difficult to distinguish from ventricular tachycardia because ventricular depolarization begins where the accessory pathway enters the ventricle
 - Negative concordance will not be antidromic tachycardia

Antidromic Tachycardia

WPW and Atrial Fibrillation

- Mechanism of Action
 - Development of Atrial Fibrillation in WPW
 - 10-32% of patients
 - Refractory period of accessory pathway is short

2019

415

Atrial fibrillation

415

MMMM , , , , Muumu MMMAlinn AL

Treatment for WPW Tachycardias

- AV Reentrant (orthodromic)
 - Can target AV node or accessory pathway
- AV Reentrant (antidromic)
- Atrial Fib with antegrade conduction over accessory pathway
 - Cannot slow conduction through AV node
 - Slow conduction over accessory pathway:
 - Procainamide
 - Flecainide
 - Sotalol
 - Propofenone
 - Ibutelide

419

419

- Lethal Outcome After Intravenous Administration of Amiodarone in Patient with Atrial Fibrillation and Ventricular Preexcitation
- MUJOVIĆ NEBOJŠA M.D.¹,
- SIMIĆ DRAGAN M.D.¹,
- ANTONIJEVIĆ NEBOJŠA M.D.¹ and
- ALEMPIJEVIĆ TAMARA M.D.²
- Journal of Cardiovascular Electrophysiology
- <u>Volume 22, Issue 9, pages 1077–1078, September 2011</u>
- Article first published online: 18 FEB 2011
- DOI: 10.1111/j.1540-8167.2011.02013.x

Final Case Study: ECG #2

Class Lesson Summary !

The 12 lead ECG in an inexpensive, noninvasive, risk free diagnostic tool, that can provide you with an amazing amount of information about your patient's heart. However: Always treat the patient not the ECG or rhythm strip.

2019

429

430

429

THANK YOU!!!

Enjoy NTI!

431

BE THE BEST THAT YOU CAN BE EVERY DAY. YOUR PATIENTS ARE COUNTING ON IT!

<u>cindy@cardionursing.com</u> <u>karen@cardionursing.com</u>

Handouts will be available for download at <u>www.cardionursing.com</u> by end of NTI.

2019